package octez-internal-libs
A package that contains some libraries used by the Octez suite
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-octez-v20.1.tag.bz2
sha256=ddfb5076eeb0b32ac21c1eed44e8fc86a6743ef18ab23fff02d36e365bb73d61
sha512=d22a827df5146e0aa274df48bc2150b098177ff7e5eab52c6109e867eb0a1f0ec63e6bfbb0e3645a6c2112de3877c91a17df32ccbff301891ce4ba630c997a65
doc/src/octez-internal-libs.irmin/node_intf.ml.html
Source file node_intf.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
(* * Copyright (c) 2013 Louis Gesbert <louis.gesbert@ocamlpro.com> * Copyright (c) 2013-2022 Thomas Gazagnaire <thomas@gazagnaire.org> * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. *) open! Import module type Core = sig (** {1 Node values} *) type t [@@deriving irmin] (** The type for node values. *) type metadata [@@deriving irmin] (** The type for node metadata. *) type contents_key [@@deriving irmin] (** The type for contents keys. *) type node_key [@@deriving irmin] (** The type for node keys. *) type step [@@deriving irmin] (** The type for steps between nodes. *) type value = [ `Node of node_key | `Contents of contents_key * metadata ] [@@deriving irmin] (** The type for either (node) keys or (contents) keys combined with their metadata. *) type hash [@@deriving irmin] (** The type of hashes of values. *) val of_list : (step * value) list -> t (** [of_list l] is the node [n] such that [list n = l]. *) val list : ?offset:int -> ?length:int -> ?cache:bool -> t -> (step * value) list (** [list t] is the contents of [t]. [offset] and [length] are used to paginate results. *) val of_seq : (step * value) Seq.t -> t (** [of_seq s] is the node [n] such that [seq n = s]. *) val seq : ?offset:int -> ?length:int -> ?cache:bool -> t -> (step * value) Seq.t (** [seq t] is the contents of [t]. [offset] and [length] are used to paginate results. See {!caching} for an explanation of the [cache] parameter *) val empty : unit -> t (** [empty ()] is the empty node. *) val is_empty : t -> bool (** [is_empty t] is true iff [t] is {!val-empty}. *) val length : t -> int (** [length t] is the number of entries in [t]. *) val hash_exn : ?force:bool -> t -> hash (** [hash_exn t] is the hash of [t]. Another way of computing it is [Hash.Typed(Hash)(Node).hash t] which computes the pre-hash of [t] before hashing it using [Hash]. [hash_exn] might be faster because the it may be optimised (e.g. it may use caching). [hash_exn t] is [hash_exn ~force:true t] which is not expected to raise an exception. [hash_exn ~force:false t] will raise [Not_found] if the hash requires IOs to be computed. *) val clear : t -> unit (** Cleanup internal caches. *) val find : ?cache:bool -> t -> step -> value option (** [find t s] is the value associated with [s] in [t]. A node can point to user-defined {{!contents_key} contents}. The edge between the node and the contents is labeled by a {!step}. See {!caching} for an explanation of the [cache] parameter *) val add : t -> step -> value -> t (** [add t s v] is the node where [find t v] is [Some s] but is similar to [t] otherwise. *) val remove : t -> step -> t (** [remove t s] is the node where [find t s] is [None] but is similar to [t] otherwise. *) module Metadata : Metadata.S with type t = metadata (** Metadata functions. *) (** {2:caching caching} [cache] regulates the caching behaviour regarding the node's internal data which may be lazily loaded from the backend, depending on the node implementation. [cache] defaults to [true] which may greatly reduce the IOs and the runtime but may also increase the memory consumption. [cache = false] doesn't replace a call to [clear], it only prevents the storing of new data, it doesn't discard the existing one. *) (** {1 Recursive Nodes} *) (** Some [Node] implementations (like [irmin-pack]'s inodes) can represent a node as a set of nodes. One operation on such "high-level" node corresponds to a sequence of recursive calls to the underlying "lower-level" nodes. Note: theses [effects] are not in the Lwt monad on purpose (so [Tree.hash] and [Tree.equal] are not in the Lwt monad as well). *) type effect := expected_depth:int -> node_key -> t option (** The type for read effects. *) val with_handler : (effect -> effect) -> t -> t (** [with_handler f] replace the current effect handler [h] by [f h]. [f h] will be called for all the recursive read effects that are required by recursive operations on nodes. .*) type head := [ `Node of (step * value) list | `Inode of int * (int * hash) list ] [@@deriving irmin] val head : t -> head (** Reveal the shallow internal structure of the node. Only hashes and not keys are revealed in the [`Inode] case, this is because these inodes might not be keyed yet. *) end module type S_generic_key = sig include Core (** @inline *) (** {2 merging} *) val merge : contents:contents_key option Merge.t -> node:node_key option Merge.t -> t Merge.t (** [merge] is the merge function for nodes. *) exception Dangling_hash of { context : string; hash : hash } end module type S = sig type hash (** @inline *) include S_generic_key with type hash := hash and type contents_key = hash and type node_key = hash end module type Portable = sig type hash (** @inline *) include Core with type hash := hash and type contents_key = hash and type node_key = hash type node val of_node : node -> t (** {2 merging} *) val merge : contents:contents_key option Merge.t -> node:node_key option Merge.t -> t Merge.t (** [merge] is the merge function for nodes. *) (** {1 Proofs} *) type proof = [ `Blinded of hash | `Values of (step * value) list | `Inode of int * (int * proof) list ] [@@deriving irmin] (** The type for proof trees. *) val to_proof : t -> proof val of_proof : depth:int -> proof -> t option (** [of_proof ~depth p] is [None] if [p] is corrupted or incompatible with [depth]. It is [Some t] when [t] is a node if the operation succeeded. [hash_exn t] never raises [Not_found] *) end open struct module S_is_a_generic_key (X : S) : S_generic_key = X end module type Maker_generic_key = functor (Hash : Hash.S) (Path : sig type step [@@deriving irmin] end) (Metadata : Metadata.S) (Contents_key : Key.S with type hash = Hash.t) (Node_key : Key.S with type hash = Hash.t) -> sig include S_generic_key with type metadata = Metadata.t and type step = Path.step and type hash = Hash.t and type contents_key = Contents_key.t and type node_key = Node_key.t module Portable : Portable with type node := t and type step := step and type metadata := metadata and type hash := hash end module type Store = sig include Indexable.S module Path : Path.S (** [Path] provides base functions on node paths. *) val merge : [> read_write ] t -> key option Merge.t (** [merge] is the 3-way merge function for nodes keys. *) module Metadata : Metadata.S (** [Metadata] provides base functions for node metadata. *) (** [Val] provides base functions for node values. *) module Val : S_generic_key with type t = value and type hash = hash and type node_key = key and type metadata = Metadata.t and type step = Path.step module Hash : Hash.Typed with type t = hash and type value = value module Contents : Contents.Store with type key = Val.contents_key (** [Contents] is the underlying contents store. *) end module type Graph = sig (** {1 Node Graphs} *) type 'a t (** The type for store handles. *) type metadata [@@deriving irmin] (** The type for node metadata. *) type contents_key [@@deriving irmin] (** The type of user-defined contents. *) type node_key [@@deriving irmin] (** The type for node values. *) type step [@@deriving irmin] (** The type of steps. A step is used to pass from one node to another. *) type path [@@deriving irmin] (** The type of store paths. A path is composed of {{!step} steps}. *) type value = [ `Node of node_key | `Contents of contents_key * metadata ] [@@deriving irmin] (** The type for store values. *) val empty : [> write ] t -> node_key Lwt.t (** The empty node. *) val v : [> write ] t -> (step * value) list -> node_key Lwt.t (** [v t n] is a new node containing [n]. *) val list : [> read ] t -> node_key -> (step * value) list Lwt.t (** [list t n] is the contents of the node [n]. *) val find : [> read ] t -> node_key -> path -> value option Lwt.t (** [find t n p] is the contents of the path [p] starting form [n]. *) val add : [> read_write ] t -> node_key -> path -> value -> node_key Lwt.t (** [add t n p v] is the node [x] such that [find t x p] is [Some v] and it behaves the same [n] for other operations. *) val remove : [> read_write ] t -> node_key -> path -> node_key Lwt.t (** [remove t n path] is the node [x] such that [find t x] is [None] and it behhaves then same as [n] for other operations. *) val closure : [> read ] t -> min:node_key list -> max:node_key list -> node_key list Lwt.t (** [closure t min max] is the unordered list of nodes [n] reachable from a node of [max] along a path which: (i) either contains no [min] or (ii) it ends with a [min]. {b Note:} Both [min] and [max] are subsets of [n]. *) val iter : [> read ] t -> min:node_key list -> max:node_key list -> ?node:(node_key -> unit Lwt.t) -> ?contents:(contents_key -> unit Lwt.t) -> ?edge:(node_key -> node_key -> unit Lwt.t) -> ?skip_node:(node_key -> bool Lwt.t) -> ?skip_contents:(contents_key -> bool Lwt.t) -> ?rev:bool -> unit -> unit Lwt.t (** [iter t min max node edge skip rev ()] iterates in topological order over the closure of [t]. It applies the following functions while traversing the graph: [node] on the nodes; [edge n predecessor_of_n] on the directed edges; [skip_node n] to not include a node [n], its predecessors and the outgoing edges of [n] and [skip_contents c] to not include content [c]. If [rev] is true (the default) then the graph is traversed in the reverse order: [node n] is applied only after it was applied on all its predecessors; [edge n p] is applied after [node n]. Note that [edge n p] is applied even if [p] is skipped. *) end module type Sigs = sig module type S = S (** [Make] provides a simple node implementation, parameterized by hash, path and metadata implementations. The contents and node values are addressed directly by their hash. *) module Make (Hash : Hash.S) (Path : sig type step [@@deriving irmin] end) (Metadata : Metadata.S) : S with type hash = Hash.t and type metadata = Metadata.t and type step = Path.step (** [Generic_key] generalises the concept of "node" to one that supports object keys that are not strictly equal to hashes. *) module Generic_key : sig module type S = S_generic_key module type Maker = Maker_generic_key module type Core = Core module Make : Maker module Make_v2 : Maker (** [Make_v2] provides a similar implementation as [Make] but the hash computation is compatible with versions older than irmin.3.0 *) module Store (C : Contents.Store) (S : Indexable.S) (H : Hash.S with type t = S.hash) (V : S with type t = S.value and type hash = H.t and type contents_key = C.key and type node_key = S.key) (M : Metadata.S with type t = V.metadata) (P : Path.S with type step = V.step) : Store with type 'a t = 'a C.t * 'a S.t and type key = S.key and type hash = S.hash and type value = S.value and module Path = P and module Metadata = M and module Val = V end (** v1 serialisation *) module V1 (N : Generic_key.S with type step = string) : sig include Generic_key.S with type contents_key = N.contents_key and type node_key = N.node_key and type step = N.step and type metadata = N.metadata val import : N.t -> t val export : t -> N.t end module Portable : sig (** Portable form of a node implementation that can be constructed from a concrete representation and used in computing hashes. Conceptually, a [Node.Portable.t] is a [Node.t] in which all internal keys have been replaced with the hashes of the values they point to. Computations over [Portable.t] values must commute with those over [t]s, as in the following diagram: {[ ┌────────┐ ┌─────────┐ of_node ┌────────────────┐ │ Key │ │ Node │ ─────────> │ Node.Portable │ └────────┘ └─────────┘ └────────────────┘ │ │ add/remove │ │ to_hash └───────────> (+) add/remove │ │ ┌──────────────┼──────────────────────> (+) v │ v v ┌────────┐ ┌─────────┐ ┌────────────────┐ │ Hash │ │ Node' │ ─────────> │ Node.Portable' │ └────────┘ └─────────┘ of_node └────────────────┘ ]} *) (** A node implementation with hashes for keys is trivially portable: *) module Of_node (S : S) : Portable with type node := S.t and type t = S.t and type step = S.step and type metadata = S.metadata and type hash = S.hash module type S = Portable end module type Store = Store (** [Store] specifies the signature for node stores. *) (** [Store] creates node stores. *) module Store (C : Contents.Store) (S : Content_addressable.S with type key = C.key) (H : Hash.S with type t = S.key) (V : S with type t = S.value and type hash = S.key) (M : Metadata.S with type t = V.metadata) (P : Path.S with type step = V.step) : Store with type 'a t = 'a C.t * 'a S.t and type key = S.key and type value = S.value and type hash = H.t and module Path = P and module Metadata = M and module Val = V module type Graph = Graph (** [Graph] specifies the signature for node graphs. A node graph is a deterministic DAG, labeled by steps. *) module Graph (N : Store) : Graph with type 'a t = 'a N.t and type contents_key = N.Contents.key and type node_key = N.key and type metadata = N.Metadata.t and type step = N.Path.step and type path = N.Path.t end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>