package ocaml-base-compiler
Official release 4.14.2
Install
Dune Dependency
Authors
Maintainers
Sources
4.14.2.tar.gz
sha256=c2d706432f93ba85bd3383fa451d74543c32a4e84a1afaf3e8ace18f7f097b43
doc/src/stdlib/map.ml.html
Source file map.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
(**************************************************************************) (* *) (* OCaml *) (* *) (* Xavier Leroy, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* en Automatique. *) (* *) (* All rights reserved. This file is distributed under the terms of *) (* the GNU Lesser General Public License version 2.1, with the *) (* special exception on linking described in the file LICENSE. *) (* *) (**************************************************************************) module type OrderedType = sig type t val compare: t -> t -> int end module type S = sig type key type !+'a t val empty: 'a t val is_empty: 'a t -> bool val mem: key -> 'a t -> bool val add: key -> 'a -> 'a t -> 'a t val update: key -> ('a option -> 'a option) -> 'a t -> 'a t val singleton: key -> 'a -> 'a t val remove: key -> 'a t -> 'a t val merge: (key -> 'a option -> 'b option -> 'c option) -> 'a t -> 'b t -> 'c t val union: (key -> 'a -> 'a -> 'a option) -> 'a t -> 'a t -> 'a t val compare: ('a -> 'a -> int) -> 'a t -> 'a t -> int val equal: ('a -> 'a -> bool) -> 'a t -> 'a t -> bool val iter: (key -> 'a -> unit) -> 'a t -> unit val fold: (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b val for_all: (key -> 'a -> bool) -> 'a t -> bool val exists: (key -> 'a -> bool) -> 'a t -> bool val filter: (key -> 'a -> bool) -> 'a t -> 'a t val filter_map: (key -> 'a -> 'b option) -> 'a t -> 'b t val partition: (key -> 'a -> bool) -> 'a t -> 'a t * 'a t val cardinal: 'a t -> int val bindings: 'a t -> (key * 'a) list val min_binding: 'a t -> (key * 'a) val min_binding_opt: 'a t -> (key * 'a) option val max_binding: 'a t -> (key * 'a) val max_binding_opt: 'a t -> (key * 'a) option val choose: 'a t -> (key * 'a) val choose_opt: 'a t -> (key * 'a) option val split: key -> 'a t -> 'a t * 'a option * 'a t val find: key -> 'a t -> 'a val find_opt: key -> 'a t -> 'a option val find_first: (key -> bool) -> 'a t -> key * 'a val find_first_opt: (key -> bool) -> 'a t -> (key * 'a) option val find_last: (key -> bool) -> 'a t -> key * 'a val find_last_opt: (key -> bool) -> 'a t -> (key * 'a) option val map: ('a -> 'b) -> 'a t -> 'b t val mapi: (key -> 'a -> 'b) -> 'a t -> 'b t val to_seq : 'a t -> (key * 'a) Seq.t val to_rev_seq : 'a t -> (key * 'a) Seq.t val to_seq_from : key -> 'a t -> (key * 'a) Seq.t val add_seq : (key * 'a) Seq.t -> 'a t -> 'a t val of_seq : (key * 'a) Seq.t -> 'a t end module Make(Ord: OrderedType) = struct type key = Ord.t type 'a t = Empty | Node of {l:'a t; v:key; d:'a; r:'a t; h:int} let height = function Empty -> 0 | Node {h} -> h let create l x d r = let hl = height l and hr = height r in Node{l; v=x; d; r; h=(if hl >= hr then hl + 1 else hr + 1)} let singleton x d = Node{l=Empty; v=x; d; r=Empty; h=1} let bal l x d r = let hl = match l with Empty -> 0 | Node {h} -> h in let hr = match r with Empty -> 0 | Node {h} -> h in if hl > hr + 2 then begin match l with Empty -> invalid_arg "Map.bal" | Node{l=ll; v=lv; d=ld; r=lr} -> if height ll >= height lr then create ll lv ld (create lr x d r) else begin match lr with Empty -> invalid_arg "Map.bal" | Node{l=lrl; v=lrv; d=lrd; r=lrr}-> create (create ll lv ld lrl) lrv lrd (create lrr x d r) end end else if hr > hl + 2 then begin match r with Empty -> invalid_arg "Map.bal" | Node{l=rl; v=rv; d=rd; r=rr} -> if height rr >= height rl then create (create l x d rl) rv rd rr else begin match rl with Empty -> invalid_arg "Map.bal" | Node{l=rll; v=rlv; d=rld; r=rlr} -> create (create l x d rll) rlv rld (create rlr rv rd rr) end end else Node{l; v=x; d; r; h=(if hl >= hr then hl + 1 else hr + 1)} let empty = Empty let is_empty = function Empty -> true | _ -> false let rec add x data = function Empty -> Node{l=Empty; v=x; d=data; r=Empty; h=1} | Node {l; v; d; r; h} as m -> let c = Ord.compare x v in if c = 0 then if d == data then m else Node{l; v=x; d=data; r; h} else if c < 0 then let ll = add x data l in if l == ll then m else bal ll v d r else let rr = add x data r in if r == rr then m else bal l v d rr let rec find x = function Empty -> raise Not_found | Node {l; v; d; r} -> let c = Ord.compare x v in if c = 0 then d else find x (if c < 0 then l else r) let rec find_first_aux v0 d0 f = function Empty -> (v0, d0) | Node {l; v; d; r} -> if f v then find_first_aux v d f l else find_first_aux v0 d0 f r let rec find_first f = function Empty -> raise Not_found | Node {l; v; d; r} -> if f v then find_first_aux v d f l else find_first f r let rec find_first_opt_aux v0 d0 f = function Empty -> Some (v0, d0) | Node {l; v; d; r} -> if f v then find_first_opt_aux v d f l else find_first_opt_aux v0 d0 f r let rec find_first_opt f = function Empty -> None | Node {l; v; d; r} -> if f v then find_first_opt_aux v d f l else find_first_opt f r let rec find_last_aux v0 d0 f = function Empty -> (v0, d0) | Node {l; v; d; r} -> if f v then find_last_aux v d f r else find_last_aux v0 d0 f l let rec find_last f = function Empty -> raise Not_found | Node {l; v; d; r} -> if f v then find_last_aux v d f r else find_last f l let rec find_last_opt_aux v0 d0 f = function Empty -> Some (v0, d0) | Node {l; v; d; r} -> if f v then find_last_opt_aux v d f r else find_last_opt_aux v0 d0 f l let rec find_last_opt f = function Empty -> None | Node {l; v; d; r} -> if f v then find_last_opt_aux v d f r else find_last_opt f l let rec find_opt x = function Empty -> None | Node {l; v; d; r} -> let c = Ord.compare x v in if c = 0 then Some d else find_opt x (if c < 0 then l else r) let rec mem x = function Empty -> false | Node {l; v; r} -> let c = Ord.compare x v in c = 0 || mem x (if c < 0 then l else r) let rec min_binding = function Empty -> raise Not_found | Node {l=Empty; v; d} -> (v, d) | Node {l} -> min_binding l let rec min_binding_opt = function Empty -> None | Node {l=Empty; v; d} -> Some (v, d) | Node {l}-> min_binding_opt l let rec max_binding = function Empty -> raise Not_found | Node {v; d; r=Empty} -> (v, d) | Node {r} -> max_binding r let rec max_binding_opt = function Empty -> None | Node {v; d; r=Empty} -> Some (v, d) | Node {r} -> max_binding_opt r let rec remove_min_binding = function Empty -> invalid_arg "Map.remove_min_elt" | Node {l=Empty; r} -> r | Node {l; v; d; r} -> bal (remove_min_binding l) v d r let merge t1 t2 = match (t1, t2) with (Empty, t) -> t | (t, Empty) -> t | (_, _) -> let (x, d) = min_binding t2 in bal t1 x d (remove_min_binding t2) let rec remove x = function Empty -> Empty | (Node {l; v; d; r} as m) -> let c = Ord.compare x v in if c = 0 then merge l r else if c < 0 then let ll = remove x l in if l == ll then m else bal ll v d r else let rr = remove x r in if r == rr then m else bal l v d rr let rec update x f = function Empty -> begin match f None with | None -> Empty | Some data -> Node{l=Empty; v=x; d=data; r=Empty; h=1} end | Node {l; v; d; r; h} as m -> let c = Ord.compare x v in if c = 0 then begin match f (Some d) with | None -> merge l r | Some data -> if d == data then m else Node{l; v=x; d=data; r; h} end else if c < 0 then let ll = update x f l in if l == ll then m else bal ll v d r else let rr = update x f r in if r == rr then m else bal l v d rr let rec iter f = function Empty -> () | Node {l; v; d; r} -> iter f l; f v d; iter f r let rec map f = function Empty -> Empty | Node {l; v; d; r; h} -> let l' = map f l in let d' = f d in let r' = map f r in Node{l=l'; v; d=d'; r=r'; h} let rec mapi f = function Empty -> Empty | Node {l; v; d; r; h} -> let l' = mapi f l in let d' = f v d in let r' = mapi f r in Node{l=l'; v; d=d'; r=r'; h} let rec fold f m accu = match m with Empty -> accu | Node {l; v; d; r} -> fold f r (f v d (fold f l accu)) let rec for_all p = function Empty -> true | Node {l; v; d; r} -> p v d && for_all p l && for_all p r let rec exists p = function Empty -> false | Node {l; v; d; r} -> p v d || exists p l || exists p r (* Beware: those two functions assume that the added k is *strictly* smaller (or bigger) than all the present keys in the tree; it does not test for equality with the current min (or max) key. Indeed, they are only used during the "join" operation which respects this precondition. *) let rec add_min_binding k x = function | Empty -> singleton k x | Node {l; v; d; r} -> bal (add_min_binding k x l) v d r let rec add_max_binding k x = function | Empty -> singleton k x | Node {l; v; d; r} -> bal l v d (add_max_binding k x r) (* Same as create and bal, but no assumptions are made on the relative heights of l and r. *) let rec join l v d r = match (l, r) with (Empty, _) -> add_min_binding v d r | (_, Empty) -> add_max_binding v d l | (Node{l=ll; v=lv; d=ld; r=lr; h=lh}, Node{l=rl; v=rv; d=rd; r=rr; h=rh}) -> if lh > rh + 2 then bal ll lv ld (join lr v d r) else if rh > lh + 2 then bal (join l v d rl) rv rd rr else create l v d r (* Merge two trees l and r into one. All elements of l must precede the elements of r. No assumption on the heights of l and r. *) let concat t1 t2 = match (t1, t2) with (Empty, t) -> t | (t, Empty) -> t | (_, _) -> let (x, d) = min_binding t2 in join t1 x d (remove_min_binding t2) let concat_or_join t1 v d t2 = match d with | Some d -> join t1 v d t2 | None -> concat t1 t2 let rec split x = function Empty -> (Empty, None, Empty) | Node {l; v; d; r} -> let c = Ord.compare x v in if c = 0 then (l, Some d, r) else if c < 0 then let (ll, pres, rl) = split x l in (ll, pres, join rl v d r) else let (lr, pres, rr) = split x r in (join l v d lr, pres, rr) let rec merge f s1 s2 = match (s1, s2) with (Empty, Empty) -> Empty | (Node {l=l1; v=v1; d=d1; r=r1; h=h1}, _) when h1 >= height s2 -> let (l2, d2, r2) = split v1 s2 in concat_or_join (merge f l1 l2) v1 (f v1 (Some d1) d2) (merge f r1 r2) | (_, Node {l=l2; v=v2; d=d2; r=r2}) -> let (l1, d1, r1) = split v2 s1 in concat_or_join (merge f l1 l2) v2 (f v2 d1 (Some d2)) (merge f r1 r2) | _ -> assert false let rec union f s1 s2 = match (s1, s2) with | (Empty, s) | (s, Empty) -> s | (Node {l=l1; v=v1; d=d1; r=r1; h=h1}, Node {l=l2; v=v2; d=d2; r=r2; h=h2}) -> if h1 >= h2 then let (l2, d2, r2) = split v1 s2 in let l = union f l1 l2 and r = union f r1 r2 in match d2 with | None -> join l v1 d1 r | Some d2 -> concat_or_join l v1 (f v1 d1 d2) r else let (l1, d1, r1) = split v2 s1 in let l = union f l1 l2 and r = union f r1 r2 in match d1 with | None -> join l v2 d2 r | Some d1 -> concat_or_join l v2 (f v2 d1 d2) r let rec filter p = function Empty -> Empty | Node {l; v; d; r} as m -> (* call [p] in the expected left-to-right order *) let l' = filter p l in let pvd = p v d in let r' = filter p r in if pvd then if l==l' && r==r' then m else join l' v d r' else concat l' r' let rec filter_map f = function Empty -> Empty | Node {l; v; d; r} -> (* call [f] in the expected left-to-right order *) let l' = filter_map f l in let fvd = f v d in let r' = filter_map f r in begin match fvd with | Some d' -> join l' v d' r' | None -> concat l' r' end let rec partition p = function Empty -> (Empty, Empty) | Node {l; v; d; r} -> (* call [p] in the expected left-to-right order *) let (lt, lf) = partition p l in let pvd = p v d in let (rt, rf) = partition p r in if pvd then (join lt v d rt, concat lf rf) else (concat lt rt, join lf v d rf) type 'a enumeration = End | More of key * 'a * 'a t * 'a enumeration let rec cons_enum m e = match m with Empty -> e | Node {l; v; d; r} -> cons_enum l (More(v, d, r, e)) let compare cmp m1 m2 = let rec compare_aux e1 e2 = match (e1, e2) with (End, End) -> 0 | (End, _) -> -1 | (_, End) -> 1 | (More(v1, d1, r1, e1), More(v2, d2, r2, e2)) -> let c = Ord.compare v1 v2 in if c <> 0 then c else let c = cmp d1 d2 in if c <> 0 then c else compare_aux (cons_enum r1 e1) (cons_enum r2 e2) in compare_aux (cons_enum m1 End) (cons_enum m2 End) let equal cmp m1 m2 = let rec equal_aux e1 e2 = match (e1, e2) with (End, End) -> true | (End, _) -> false | (_, End) -> false | (More(v1, d1, r1, e1), More(v2, d2, r2, e2)) -> Ord.compare v1 v2 = 0 && cmp d1 d2 && equal_aux (cons_enum r1 e1) (cons_enum r2 e2) in equal_aux (cons_enum m1 End) (cons_enum m2 End) let rec cardinal = function Empty -> 0 | Node {l; r} -> cardinal l + 1 + cardinal r let rec bindings_aux accu = function Empty -> accu | Node {l; v; d; r} -> bindings_aux ((v, d) :: bindings_aux accu r) l let bindings s = bindings_aux [] s let choose = min_binding let choose_opt = min_binding_opt let add_seq i m = Seq.fold_left (fun m (k,v) -> add k v m) m i let of_seq i = add_seq i empty let rec seq_of_enum_ c () = match c with | End -> Seq.Nil | More (k,v,t,rest) -> Seq.Cons ((k,v), seq_of_enum_ (cons_enum t rest)) let to_seq m = seq_of_enum_ (cons_enum m End) let rec snoc_enum s e = match s with Empty -> e | Node{l; v; d; r} -> snoc_enum r (More(v, d, l, e)) let rec rev_seq_of_enum_ c () = match c with | End -> Seq.Nil | More (k,v,t,rest) -> Seq.Cons ((k,v), rev_seq_of_enum_ (snoc_enum t rest)) let to_rev_seq c = rev_seq_of_enum_ (snoc_enum c End) let to_seq_from low m = let rec aux low m c = match m with | Empty -> c | Node {l; v; d; r; _} -> begin match Ord.compare v low with | 0 -> More (v, d, r, c) | n when n<0 -> aux low r c | _ -> aux low l (More (v, d, r, c)) end in seq_of_enum_ (aux low m End) end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>