package ocaml-base-compiler
include module type of struct include Bigarray end
with module Genarray := Bigarray.Genarray
with module Array1 := Bigarray.Array1
with module Array2 := Bigarray.Array2
with module Array3 := Bigarray.Array3
Element kinds
Big arrays can contain elements of the following kinds:
- IEEE single precision (32 bits) floating-point numbers (
Bigarray.float32_elt
), - IEEE double precision (64 bits) floating-point numbers (
Bigarray.float64_elt
), - IEEE single precision (2 * 32 bits) floating-point complex numbers (
Bigarray.complex32_elt
), - IEEE double precision (2 * 64 bits) floating-point complex numbers (
Bigarray.complex64_elt
), - 8-bit integers (signed or unsigned) (
Bigarray.int8_signed_elt
orBigarray.int8_unsigned_elt
), - 16-bit integers (signed or unsigned) (
Bigarray.int16_signed_elt
orBigarray.int16_unsigned_elt
), - OCaml integers (signed, 31 bits on 32-bit architectures, 63 bits on 64-bit architectures) (
Bigarray.int_elt
), - 32-bit signed integers (
Bigarray.int32_elt
), - 64-bit signed integers (
Bigarray.int64_elt
), - platform-native signed integers (32 bits on 32-bit architectures, 64 bits on 64-bit architectures) (
Bigarray.nativeint_elt
).
Each element kind is represented at the type level by one of the *_elt
types defined below (defined with a single constructor instead of abstract types for technical injectivity reasons).
type ('a, 'b) kind = ('a, 'b) Bigarray.kind =
| Float32 : (float, float32_elt) kind
| Float64 : (float, float64_elt) kind
| Int8_signed : (int, int8_signed_elt) kind
| Int8_unsigned : (int, int8_unsigned_elt) kind
| Int16_signed : (int, int16_signed_elt) kind
| Int16_unsigned : (int, int16_unsigned_elt) kind
| Int32 : (int32, int32_elt) kind
| Int64 : (int64, int64_elt) kind
| Int : (int, int_elt) kind
| Nativeint : (nativeint, nativeint_elt) kind
| Complex32 : (Complex.t, complex32_elt) kind
| Complex64 : (Complex.t, complex64_elt) kind
| Char : (char, int8_unsigned_elt) kind
To each element kind is associated an OCaml type, which is the type of OCaml values that can be stored in the big array or read back from it. This type is not necessarily the same as the type of the array elements proper: for instance, a big array whose elements are of kind float32_elt
contains 32-bit single precision floats, but reading or writing one of its elements from OCaml uses the OCaml type float
, which is 64-bit double precision floats.
The GADT type ('a, 'b) kind
captures this association of an OCaml type 'a
for values read or written in the big array, and of an element kind 'b
which represents the actual contents of the big array. Its constructors list all possible associations of OCaml types with element kinds, and are re-exported below for backward-compatibility reasons.
Using a generalized algebraic datatype (GADT) here allows to write well-typed polymorphic functions whose return type depend on the argument type, such as:
let zero : type a b. (a, b) kind -> a = function
| Float32 -> 0.0 | Complex32 -> Complex.zero
| Float64 -> 0.0 | Complex64 -> Complex.zero
| Int8_signed -> 0 | Int8_unsigned -> 0
| Int16_signed -> 0 | Int16_unsigned -> 0
| Int32 -> 0l | Int64 -> 0L
| Int -> 0 | Nativeint -> 0n
| Char -> '\000'
val float32 : (float, float32_elt) kind
See Bigarray.char
.
val float64 : (float, float64_elt) kind
See Bigarray.char
.
val complex32 : (Complex.t, complex32_elt) kind
See Bigarray.char
.
val complex64 : (Complex.t, complex64_elt) kind
See Bigarray.char
.
val int8_signed : (int, int8_signed_elt) kind
See Bigarray.char
.
val int8_unsigned : (int, int8_unsigned_elt) kind
See Bigarray.char
.
val int16_signed : (int, int16_signed_elt) kind
See Bigarray.char
.
val int16_unsigned : (int, int16_unsigned_elt) kind
See Bigarray.char
.
See Bigarray.char
.
See Bigarray.char
.
See Bigarray.char
.
val nativeint : (nativeint, nativeint_elt) kind
See Bigarray.char
.
val char : (char, int8_unsigned_elt) kind
As shown by the types of the values above, big arrays of kind float32_elt
and float64_elt
are accessed using the OCaml type float
. Big arrays of complex kinds complex32_elt
, complex64_elt
are accessed with the OCaml type Complex.t
. Big arrays of integer kinds are accessed using the smallest OCaml integer type large enough to represent the array elements: int
for 8- and 16-bit integer bigarrays, as well as OCaml-integer bigarrays; int32
for 32-bit integer bigarrays; int64
for 64-bit integer bigarrays; and nativeint
for platform-native integer bigarrays. Finally, big arrays of kind int8_unsigned_elt
can also be accessed as arrays of characters instead of arrays of small integers, by using the kind value char
instead of int8_unsigned
.
val kind_size_in_bytes : ('a, 'b) kind -> int
kind_size_in_bytes k
is the number of bytes used to store an element of type k
.
Array layouts
To facilitate interoperability with existing C and Fortran code, this library supports two different memory layouts for big arrays, one compatible with the C conventions, the other compatible with the Fortran conventions.
In the C-style layout, array indices start at 0, and multi-dimensional arrays are laid out in row-major format. That is, for a two-dimensional array, all elements of row 0 are contiguous in memory, followed by all elements of row 1, etc. In other terms, the array elements at (x,y)
and (x, y+1)
are adjacent in memory.
In the Fortran-style layout, array indices start at 1, and multi-dimensional arrays are laid out in column-major format. That is, for a two-dimensional array, all elements of column 0 are contiguous in memory, followed by all elements of column 1, etc. In other terms, the array elements at (x,y)
and (x+1, y)
are adjacent in memory.
Each layout style is identified at the type level by the phantom types Bigarray.c_layout
and Bigarray.fortran_layout
respectively.
Supported layouts
The GADT type 'a layout
represents one of the two supported memory layouts: C-style or Fortran-style. Its constructors are re-exported as values below for backward-compatibility reasons.
type 'a layout = 'a Bigarray.layout =
| C_layout : c_layout layout
| Fortran_layout : fortran_layout layout
val fortran_layout : fortran_layout layout
Generic arrays (of arbitrarily many dimensions)
Zero-dimensional arrays
module Array0 = Bigarray.Array0
Zero-dimensional arrays. The Array0
structure provides operations similar to those of Bigarray.Genarray
, but specialized to the case of zero-dimensional arrays that only contain a single scalar value. Statically knowing the number of dimensions of the array allows faster operations, and more precise static type-checking.
One-dimensional arrays
Two-dimensional arrays
Three-dimensional arrays
Coercions between generic big arrays and fixed-dimension big arrays
val genarray_of_array0 :
('a, 'b, 'c) Array0.t ->
('a, 'b, 'c) Bigarray.Genarray.t
Return the generic big array corresponding to the given zero-dimensional big array.
val genarray_of_array1 :
('a, 'b, 'c) Bigarray.Array1.t ->
('a, 'b, 'c) Bigarray.Genarray.t
Return the generic big array corresponding to the given one-dimensional big array.
val genarray_of_array2 :
('a, 'b, 'c) Bigarray.Array2.t ->
('a, 'b, 'c) Bigarray.Genarray.t
Return the generic big array corresponding to the given two-dimensional big array.
val genarray_of_array3 :
('a, 'b, 'c) Bigarray.Array3.t ->
('a, 'b, 'c) Bigarray.Genarray.t
Return the generic big array corresponding to the given three-dimensional big array.
val array0_of_genarray :
('a, 'b, 'c) Bigarray.Genarray.t ->
('a, 'b, 'c) Array0.t
Return the zero-dimensional big array corresponding to the given generic big array. Raise Invalid_argument
if the generic big array does not have exactly zero dimension.
val array1_of_genarray :
('a, 'b, 'c) Bigarray.Genarray.t ->
('a, 'b, 'c) Bigarray.Array1.t
Return the one-dimensional big array corresponding to the given generic big array. Raise Invalid_argument
if the generic big array does not have exactly one dimension.
val array2_of_genarray :
('a, 'b, 'c) Bigarray.Genarray.t ->
('a, 'b, 'c) Bigarray.Array2.t
Return the two-dimensional big array corresponding to the given generic big array. Raise Invalid_argument
if the generic big array does not have exactly two dimensions.
val array3_of_genarray :
('a, 'b, 'c) Bigarray.Genarray.t ->
('a, 'b, 'c) Bigarray.Array3.t
Return the three-dimensional big array corresponding to the given generic big array. Raise Invalid_argument
if the generic big array does not have exactly three dimensions.
Re-shaping big arrays
val reshape :
('a, 'b, 'c) Bigarray.Genarray.t ->
int array ->
('a, 'b, 'c) Bigarray.Genarray.t
reshape b [|d1;...;dN|]
converts the big array b
to a N
-dimensional array of dimensions d1
...dN
. The returned array and the original array b
share their data and have the same layout. For instance, assuming that b
is a one-dimensional array of dimension 12, reshape b [|3;4|]
returns a two-dimensional array b'
of dimensions 3 and 4. If b
has C layout, the element (x,y)
of b'
corresponds to the element x * 3 + y
of b
. If b
has Fortran layout, the element (x,y)
of b'
corresponds to the element x + (y - 1) * 4
of b
. The returned big array must have exactly the same number of elements as the original big array b
. That is, the product of the dimensions of b
must be equal to i1 * ... * iN
. Otherwise, Invalid_argument
is raised.
val reshape_0 : ('a, 'b, 'c) Bigarray.Genarray.t -> ('a, 'b, 'c) Array0.t
Specialized version of Bigarray.reshape
for reshaping to zero-dimensional arrays.
val reshape_1 :
('a, 'b, 'c) Bigarray.Genarray.t ->
int ->
('a, 'b, 'c) Bigarray.Array1.t
Specialized version of Bigarray.reshape
for reshaping to one-dimensional arrays.
val reshape_2 :
('a, 'b, 'c) Bigarray.Genarray.t ->
int ->
int ->
('a, 'b, 'c) Bigarray.Array2.t
Specialized version of Bigarray.reshape
for reshaping to two-dimensional arrays.
val reshape_3 :
('a, 'b, 'c) Bigarray.Genarray.t ->
int ->
int ->
int ->
('a, 'b, 'c) Bigarray.Array3.t
Specialized version of Bigarray.reshape
for reshaping to three-dimensional arrays.
module Genarray : sig ... end
module Array1 : sig ... end
module Array2 : sig ... end
module Array3 : sig ... end