package melange
Toolchain to produce JS from Reason/OCaml
Install
Dune Dependency
Authors
Maintainers
Sources
melange-5.1.0-51.tbz
sha256=0c817cbd92c42ac15fea6e6d975fd3eb3aa31f22b10cca22b3687ffed0e1b092
sha512=a0b85e22b106df7e9448d12977b740f735445640d4a9368591bdf5e67a95b93d5aacf957086c524549e3402faf0916c3f501ba43a631c74d8af4a7c986842c09
doc/src/melange.js_parser/flow_set.ml.html
Source file flow_set.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
(* Portions Copyright (c) Meta Platforms, Inc. and affiliates. *) (*********************************************************************** * * * Objective Caml * * * * Xavier Leroy, projet Cristal, INRIA Rocquencourt * * * * Copyright 1996 Institut National de Recherche en Informatique et * * en Automatique. All rights reserved. This file is distributed * * under the terms of the GNU Library General Public License, with * * the special exception on linking described in file LICENSE. * * * ***********************************************************************) (* This module has been inspired from the OCaml standard library. * There are some modifications to make it run fast. * - It adds a Leaf node to avoid excessive allocation for singleton set * - In the hot [bal] function when we we know it has to be [Node], we do * an unsafe cast to avoid some unneeded tests * - Functions not need comparison functions are lifted outside functors * - We can add more utilities relying on the internals in the future *) module type OrderedType = sig type t val compare : t -> t -> int end module type S = sig type elt type t val empty : t val is_empty : t -> bool val mem : elt -> t -> bool val add : elt -> t -> t val singleton : elt -> t val remove : elt -> t -> t val union : t -> t -> t val inter : t -> t -> t val disjoint : t -> t -> bool val diff : t -> t -> t val compare : t -> t -> int val equal : t -> t -> bool val subset : t -> t -> bool val iter : (elt -> unit) -> t -> unit val map : (elt -> elt) -> t -> t val fold : (elt -> 'a -> 'a) -> t -> 'a -> 'a val for_all : (elt -> bool) -> t -> bool val exists : (elt -> bool) -> t -> bool val filter : (elt -> bool) -> t -> t val partition : (elt -> bool) -> t -> t * t val cardinal : t -> int val elements : t -> elt list val min_elt : t -> elt val min_elt_opt : t -> elt option val max_elt : t -> elt val max_elt_opt : t -> elt option val choose : t -> elt val choose_opt : t -> elt option val find : elt -> t -> elt val find_opt : elt -> t -> elt option val to_seq : t -> elt Seq.t val of_list : elt list -> t val make_pp : (Format.formatter -> elt -> unit) -> Format.formatter -> t -> unit val of_increasing_iterator_unchecked : (unit -> elt) -> int -> t val of_sorted_array_unchecked : elt array -> t val find_first_opt : (elt -> bool) -> t -> elt option end type 'elt t0 = | Empty | Leaf of 'elt | Node of { h: int; v: 'elt; l: 'elt t0; r: 'elt t0; } type 'elt partial_node = { h: int; v: 'elt; l: 'elt t0; r: 'elt t0; } external ( ~! ) : 'elt t0 -> 'elt partial_node = "%identity" type ('elt, 't) enumeration0 = | End | More of 'elt * 't * ('elt, 't) enumeration0 let rec cons_enum s e = match s with | Empty -> e | Leaf v -> More (v, Empty, e) | Node { l; v; r; _ } -> cons_enum l (More (v, r, e)) let rec seq_of_enum_ c () = match c with | End -> Seq.Nil | More (x, t, rest) -> Seq.Cons (x, seq_of_enum_ (cons_enum t rest)) let to_seq c = seq_of_enum_ (cons_enum c End) let[@inline] height = function | Empty -> 0 | Leaf _ -> 1 | Node { h; _ } -> h let[@inline] singleton x = Leaf x (* FIXME: we should check to avoid creating unneeded Node - node - Node This function produce Node of height at least [1] *) let unsafe_node ~l ~v ~r = match (l, r) with | (Empty, Empty) -> singleton v | (Leaf _, Empty) | (Leaf _, Leaf _) | (Empty, Leaf _) -> Node { l; v; r; h = 2 } | (Node { h; _ }, (Leaf _ | Empty)) | ((Leaf _ | Empty), Node { h; _ }) -> Node { l; v; r; h = h + 1 } | (Node { h = hl; _ }, Node { h = hr; _ }) -> let h = if hl >= hr then hl + 1 else hr + 1 in Node { l; v; r; h } (* Creates a new node with left son l, value v and right son r. We must have all elements of l < v < all elements of r. l and r must be balanced and | height l - height r | <= 2. Inline expansion of height for better speed. *) let create l v r = let hl = height l in let hr = height r in Node { l; v; r; h = ( if hl >= hr then hl + 1 else hr + 1 ); } let rec of_increasing_iterator_unchecked f = function | 0 -> Empty | 1 -> let v = f () in Leaf v | n -> let lenl = n lsr 1 in let lenr = n - lenl - 1 in let l = of_increasing_iterator_unchecked f lenl in let v = f () in let r = of_increasing_iterator_unchecked f lenr in Node { l; v; r; h = height l + 1 } let of_sorted_array_unchecked xs = let len = Array.length xs in let i = ref 0 in let f () = let x = xs.(!i) in incr i; x in of_increasing_iterator_unchecked f len (* Same as create, but performs one step of rebalancing if necessary. Assumes l and r balanced and | height l - height r | <= 3. Inline expansion of create for better speed in the most frequent case where no rebalancing is required. *) let bal l v r = let hl = height l in let hr = height r in if hl > hr + 2 then (* hl is at least of height > 2 [3], so it should be [Node] Note having in-efficient nodes like [Node (empty,v,empty)] won't affect correctness here, since it will be even more likely to be [Node] But we are stricter with height *) let { l = ll; v = lv; r = lr; _ } = ~!l in if height ll >= height lr then create ll lv (unsafe_node ~l:lr ~v ~r) else (* Int his path hlr > hll while hl = hlr + 1 so [hlr] > 1, so it should be [Node]*) let { l = lrl; v = lrv; r = lrr; _ } = ~!lr in create (unsafe_node ~l:ll ~v:lv ~r:lrl) lrv (unsafe_node ~l:lrr ~v ~r) else if hr > hl + 2 then (* hr is at least of height > 2 [3], so it should be [Node] *) let { l = rl; v = rv; r = rr; _ } = ~!r in if height rr >= height rl then create (unsafe_node ~l ~v ~r:rl) rv rr else (* In this path hrl > hrr while hr = hrl + 1, so [hrl] > 1, so it should be [Node] *) let { l = rll; v = rlv; r = rlr; _ } = ~!rl in create (unsafe_node ~l ~v ~r:rll) rlv (unsafe_node ~l:rlr ~v:rv ~r:rr) else unsafe_node ~l ~v ~r (* Beware: those two functions assume that the added v is *strictly* smaller (or bigger) than all the present elements in the tree; it does not test for equality with the current min (or max) element. Indeed, they are only used during the "join" operation which respects this precondition. *) let rec add_min_element x = function | Empty -> singleton x | Leaf v -> unsafe_node ~l:(singleton x) ~v ~r:Empty | Node { l; v; r; _ } -> bal (add_min_element x l) v r let rec add_max_element x = function | Empty -> singleton x | Leaf v -> unsafe_node ~l:Empty ~v ~r:(singleton x) | Node { l; v; r; _ } -> bal l v (add_max_element x r) (* Same as create and bal, but no assumptions are made on the relative heights of l and r. *) let rec join l v r = match (l, r) with | (Empty, _) -> add_min_element v r | (_, Empty) -> add_max_element v l | (Leaf _, Leaf _) -> unsafe_node ~l ~v ~r | (Leaf _, Node { l = rl; v = rv; r = rr; h = rh }) -> if rh > 3 then bal (join l v rl) rv rr else create l v r | (Node { l = ll; v = lv; r = lr; h = lh }, Leaf _) -> if lh > 3 then bal ll lv (join lr v r) else create l v r | (Node { l = ll; v = lv; r = lr; h = lh }, Node { l = rl; v = rv; r = rr; h = rh }) -> if lh > rh + 2 then bal ll lv (join lr v r) else if rh > lh + 2 then bal (join l v rl) rv rr else create l v r (* Smallest and greatest element of a set *) let rec min_elt = function | Empty -> raise Not_found | Leaf v -> v | Node { l = Empty; v; _ } -> v | Node { l; _ } -> min_elt l let rec min_elt_opt = function | Empty -> None | Leaf v -> Some v | Node { l = Empty; v; _ } -> Some v | Node { l; _ } -> min_elt_opt l let rec max_elt = function | Empty -> raise Not_found | Node { v; r = Empty; _ } -> v | Leaf v -> v | Node { r; _ } -> max_elt r let rec max_elt_opt = function | Empty -> None | Node { v; r = Empty; _ } -> Some v | Leaf v -> Some v | Node { r; _ } -> max_elt_opt r (* Remove the smallest element of the given set *) let rec remove_min_elt = function | Empty -> invalid_arg "Set.remove_min_elt" | Leaf _ -> Empty | Node { l = Empty; r; _ } -> r | Node { l; v; r; _ } -> bal (remove_min_elt l) v r (* Merge two trees l and r into one. All elements of l must precede the elements of r. Assume | height l - height r | <= 2. *) let merge t1 t2 = match (t1, t2) with | (Empty, t) -> t | (t, Empty) -> t | (_, _) -> bal t1 (min_elt t2) (remove_min_elt t2) (* Merge two trees l and r into one. All elements of l must precede the elements of r. No assumption on the heights of l and r. *) let concat t1 t2 = match (t1, t2) with | (Empty, t) -> t | (t, Empty) -> t | (_, _) -> join t1 (min_elt t2) (remove_min_elt t2) let rec cardinal = function | Empty -> 0 | Leaf _ -> 1 | Node { l; r; _ } -> cardinal l + 1 + cardinal r let rec elements_aux accu = function | Empty -> accu | Leaf v -> v :: accu | Node { l; v; r; _ } -> elements_aux (v :: elements_aux accu r) l let elements s = elements_aux [] s let empty = Empty let[@inline] is_empty = function | Empty -> true | _ -> false let of_sorted_list l = let rec sub n l = match (n, l) with | (0, l) -> (Empty, l) | (1, x0 :: l) -> (singleton x0, l) | (2, x0 :: x1 :: l) -> (Node { l = singleton x0; v = x1; r = Empty; h = 2 }, l) | (3, x0 :: x1 :: x2 :: l) -> (Node { l = singleton x0; v = x1; r = singleton x2; h = 2 }, l) | (n, l) -> let nl = n / 2 in let (left, l) = sub nl l in (match l with | [] -> assert false | mid :: l -> let (right, l) = sub (n - nl - 1) l in (create left mid right, l)) in fst (sub (List.length l) l) type 'a t1 = 'a t0 = private | Empty | Leaf of 'a | Node of { h: int; v: 'a; l: 'a t0; r: 'a t0; } module Make (Ord : OrderedType) : S with type elt = Ord.t = struct type elt = Ord.t type t = elt t1 let singleton = singleton (* Insertion of one element *) let min_elt_opt = min_elt_opt let max_elt_opt = max_elt_opt let min_elt = min_elt let max_elt = max_elt let elements = elements let cardinal = cardinal let is_empty = is_empty let empty = empty let choose = min_elt let choose_opt = min_elt_opt let rec add x t = match t with | Empty -> singleton x | Leaf v -> let c = Ord.compare x v in if c = 0 then t else if c < 0 then unsafe_node ~l:(singleton x) ~v ~r:empty else unsafe_node ~l:t ~v:x ~r:empty | Node { l; v; r; _ } as t -> let c = Ord.compare x v in if c = 0 then t else if c < 0 then let ll = add x l in if l == ll then t else bal ll v r else let rr = add x r in if r == rr then t else bal l v rr let ( @> ) = add (* Splitting. split x s returns a triple (l, present, r) where - l is the set of elements of s that are < x - r is the set of elements of s that are > x - present is false if s contains no element equal to x, or true if s contains an element equal to x. *) let rec split x tree = match tree with | Empty -> (empty, false, empty) | Leaf v -> let c = Ord.compare x v in if c = 0 then (empty, true, empty) else if c < 0 then (empty, false, tree) else (tree, false, empty) | Node { l; v; r; _ } -> let c = Ord.compare x v in if c = 0 then (l, true, r) else if c < 0 then let (ll, pres, rl) = split x l in (ll, pres, join rl v r) else let (lr, pres, rr) = split x r in (join l v lr, pres, rr) (* Implementation of the set operations *) let rec mem x = function | Empty -> false | Leaf v -> let c = Ord.compare x v in c = 0 | Node { l; v; r; _ } -> let c = Ord.compare x v in c = 0 || mem x ( if c < 0 then l else r ) let rec remove x tree = match tree with | Empty -> empty | Leaf v -> let c = Ord.compare x v in if c = 0 then empty else tree | Node { l; v; r; _ } as t -> let c = Ord.compare x v in if c = 0 then merge l r else if c < 0 then let ll = remove x l in if l == ll then t else bal ll v r else let rr = remove x r in if r == rr then t else bal l v rr let rec union s1 s2 = match (s1, s2) with | (Empty, t2) -> t2 | (t1, Empty) -> t1 | (Leaf v, s2) -> add v s2 | (s1, Leaf v) -> add v s1 | (Node { l = l1; v = v1; r = r1; h = h1 }, Node { l = l2; v = v2; r = r2; h = h2 }) -> if h1 >= h2 then if h2 = 1 then add v2 s1 else let (l2, _, r2) = split v1 s2 in join (union l1 l2) v1 (union r1 r2) else if h1 = 1 then add v1 s2 else let (l1, _, r1) = split v2 s1 in join (union l1 l2) v2 (union r1 r2) let rec inter s1 s2 = match (s1, s2) with | (Empty, _) -> empty | (_, Empty) -> empty | (Leaf v, _) -> if mem v s2 then s1 else empty | (Node { l = l1; v = v1; r = r1; _ }, t2) -> (match split v1 t2 with | (l2, false, r2) -> concat (inter l1 l2) (inter r1 r2) | (l2, true, r2) -> join (inter l1 l2) v1 (inter r1 r2)) (* Same as split, but compute the left and right subtrees only if the pivot element is not in the set. The right subtree is computed on demand. *) type split_bis = | Found | NotFound of t * (unit -> t) let rec split_bis x = function | Empty -> NotFound (empty, (fun () -> empty)) | Leaf v -> let c = Ord.compare x v in if c = 0 then Found else NotFound (empty, (fun () -> empty)) | Node { l; v; r; _ } -> let c = Ord.compare x v in if c = 0 then Found else if c < 0 then match split_bis x l with | Found -> Found | NotFound (ll, rl) -> NotFound (ll, (fun () -> join (rl ()) v r)) else ( match split_bis x r with | Found -> Found | NotFound (lr, rr) -> NotFound (join l v lr, rr) ) let rec disjoint s1 s2 = match (s1, s2) with | (Empty, _) | (_, Empty) -> true | (Leaf v, s) | (s, Leaf v) -> not (mem v s) | (Node { l = l1; v = v1; r = r1; _ }, t2) -> if s1 == s2 then false else ( match split_bis v1 t2 with | NotFound (l2, r2) -> disjoint l1 l2 && disjoint r1 (r2 ()) | Found -> false ) let rec diff s1 s2 = match (s1, s2) with | (Empty, _) -> empty | (t1, Empty) -> t1 | (Leaf v, _) -> if mem v s2 then empty else s1 | (Node { l = l1; v = v1; r = r1; _ }, t2) -> (match split v1 t2 with | (l2, false, r2) -> join (diff l1 l2) v1 (diff r1 r2) | (l2, true, r2) -> concat (diff l1 l2) (diff r1 r2)) let rec compare_aux e1 e2 = match (e1, e2) with | (End, End) -> 0 | (End, _) -> -1 | (_, End) -> 1 | (More (v1, r1, e1), More (v2, r2, e2)) -> let c = Ord.compare v1 v2 in if c <> 0 then c else compare_aux (cons_enum r1 e1) (cons_enum r2 e2) let compare s1 s2 = compare_aux (cons_enum s1 End) (cons_enum s2 End) let equal s1 s2 = compare s1 s2 = 0 let rec subset s1 s2 = match (s1, s2) with | (Empty, _) -> true | (_, Empty) -> false | (Leaf v1, Leaf v2) -> let c = Ord.compare v1 v2 in if c = 0 then true else false | (Node { v = v1; h; _ }, Leaf v2) -> h = 1 && (* conservative here *) Ord.compare v1 v2 = 0 | (Leaf v1, Node { l = l2; v = v2; r = r2; _ }) -> let c = Ord.compare v1 v2 in if c = 0 then true else if c < 0 then subset s1 l2 else subset s1 r2 | (Node { l = l1; v = v1; r = r1; _ }, (Node { l = l2; v = v2; r = r2; _ } as t2)) -> let c = Ord.compare v1 v2 in if c = 0 then subset l1 l2 && subset r1 r2 else if c < 0 then (* Better to keep invariant here, since our unsafe code relies on such invariant *) subset (unsafe_node ~l:l1 ~v:v1 ~r:empty) l2 && subset r1 t2 else subset (unsafe_node ~l:empty ~v:v1 ~r:r1) r2 && subset l1 t2 let rec iter f = function | Empty -> () | Leaf v -> f v | Node { l; v; r; _ } -> iter f l; f v; iter f r let rec fold f s accu = match s with | Empty -> accu | Leaf v -> f v accu | Node { l; v; r; _ } -> fold f r (f v (fold f l accu)) let rec for_all p = function | Empty -> true | Leaf v -> p v | Node { l; v; r; _ } -> p v && for_all p l && for_all p r let rec exists p = function | Empty -> false | Leaf v -> p v | Node { l; v; r; _ } -> p v || exists p l || exists p r let rec filter p tree = match tree with | Empty -> empty | Leaf v -> let pv = p v in if pv then tree else empty | Node { l; v; r; _ } as t -> (* call [p] in the expected left-to-right order *) let l' = filter p l in let pv = p v in let r' = filter p r in if pv then if l == l' && r == r' then t else join l' v r' else concat l' r' let rec partition p tree = match tree with | Empty -> (empty, empty) | Leaf v -> let pv = p v in if pv then (tree, empty) else (empty, tree) | Node { l; v; r; _ } -> (* call [p] in the expected left-to-right order *) let (lt, lf) = partition p l in let pv = p v in let (rt, rf) = partition p r in if pv then (join lt v rt, concat lf rf) else (concat lt rt, join lf v rf) let rec find x = function | Empty -> raise Not_found | Leaf v -> let c = Ord.compare x v in if c = 0 then v else raise Not_found | Node { l; v; r; _ } -> let c = Ord.compare x v in if c = 0 then v else find x ( if c < 0 then l else r ) let rec find_opt x = function | Empty -> None | Leaf v -> let c = Ord.compare x v in if c = 0 then Some v else None | Node { l; v; r; _ } -> let c = Ord.compare x v in if c = 0 then Some v else find_opt x ( if c < 0 then l else r ) let try_join l v r = (* [join l v r] can only be called when (elements of l < v < elements of r); use [try_join l v r] when this property may not hold, but you hope it does hold in the common case *) if (is_empty l || Ord.compare (max_elt l) v < 0) && (is_empty r || Ord.compare v (min_elt r) < 0) then join l v r else union l (add v r) let rec map f tree = match tree with | Empty -> empty | Leaf v -> let v' = f v in if v == v' then tree else singleton v' | Node { l; v; r; _ } as t -> (* enforce left-to-right evaluation order *) let l' = map f l in let v' = f v in let r' = map f r in if l == l' && v == v' && r == r' then t else try_join l' v' r' let of_list l = match l with | [] -> empty | [x0] -> singleton x0 | [x0; x1] -> x1 @> singleton x0 | [x0; x1; x2] -> x2 @> x1 @> singleton x0 | [x0; x1; x2; x3] -> x3 @> x2 @> x1 @> singleton x0 | [x0; x1; x2; x3; x4] -> x4 @> x3 @> x2 @> x1 @> singleton x0 | _ -> of_sorted_list (List.sort_uniq Ord.compare l) let to_seq = to_seq let make_pp pp_key fmt iset = Format.fprintf fmt "@[<2>{"; let elements = elements iset in (match elements with | [] -> () | _ -> Format.fprintf fmt " "); ignore (List.fold_left (fun sep s -> if sep then Format.fprintf fmt ";@ "; pp_key fmt s; true) false elements ); (match elements with | [] -> () | _ -> Format.fprintf fmt " "); Format.fprintf fmt "@,}@]" let of_increasing_iterator_unchecked = of_increasing_iterator_unchecked let of_sorted_array_unchecked = of_sorted_array_unchecked let rec find_first_opt_aux v0 f = function | Empty -> Some v0 | Leaf v -> if f v then Some v else Some v0 | Node { l; v; r; _ } -> if f v then find_first_opt_aux v f l else find_first_opt_aux v0 f r let rec find_first_opt f = function | Empty -> None | Leaf v -> if f v then Some v else None | Node { l; v; r; _ } -> if f v then find_first_opt_aux v f l else find_first_opt f r end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>