package melange
Toolchain to produce JS from Reason/OCaml
Install
Dune Dependency
Authors
Maintainers
Sources
melange-5.0.0-52.tbz
sha256=0f28c188cbe7087b9f15ea64f311cc326554fa3ff2102bd5ecccb859e016e164
sha512=9a1f163a31c5715f213240b21f904c7fcee521e8739a612645389a6aefc872f527c2498fc90a4b234dee38cc0cf09fc723a340690b0ae44de8a22d9bc51fee42
doc/src/melange.js_parser/flow_map.ml.html
Source file flow_map.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
(* Portions Copyright (c) Meta Platforms, Inc. and affiliates. *) (*********************************************************************** * * * Objective Caml * * * * Xavier Leroy, projet Cristal, INRIA Rocquencourt * * * * Copyright 1996 Institut National de Recherche en Informatique et * * en Automatique. All rights reserved. This file is distributed * * under the terms of the GNU Library General Public License, with * * the special exception on linking described in file LICENSE. * * * ***********************************************************************) (* This module has been inspired from the OCaml standard library. * There are some modifications to make it run fast. * - It adds a Leaf node to avoid excessive allocation for singleton map * - In the hot [bal] function when we know it has to be [Node], we do * an unsafe cast to avoid some unneeded tests * - Functions not needing comparison functions are lifted outside functors * - Leaf node is cast as a tuple to save some allocations * - We add some utilities e.g, [adjust] and can add more relying on the * internals in the future *) type ('k, 'v) t0 = | Empty | Leaf of { v: 'k; d: 'v; } | Node of { h: int; v: 'k; d: 'v; l: ('k, 'v) t0; r: ('k, 'v) t0; } type ('k, 'v) partial_node = { h: int; v: 'k; d: 'v; l: ('k, 'v) t0; r: ('k, 'v) t0; } type ('k, 'v) leaf_tuple = 'k * 'v external ( ~!! ) : ('k, 'v) t0 -> ('k, 'v) leaf_tuple = "%identity" external ( ~! ) : ('k, 'v) t0 -> ('k, 'v) partial_node = "%identity" let[@inline] height = function | Empty -> 0 | Leaf _ -> 1 | Node { h; _ } -> h let singleton x d = Leaf { v = x; d } let sorted_two_nodes_larger node v d = Node { l = node; v; d; r = Empty; h = 2 } let sorted_two_nodes_smaller v d node = Node { l = Empty; v; d; r = node; h = 2 } let create l x d r = let hl = height l in let hr = height r in let h = if hl >= hr then hl + 1 else hr + 1 in if h = 1 then singleton x d else Node { l; v = x; d; r; h } let rec of_increasing_iterator_unchecked f = function | 0 -> Empty | 1 -> let (v, d) = f () in Leaf { v; d } | n -> let lenl = n lsr 1 in let lenr = n - lenl - 1 in let l = of_increasing_iterator_unchecked f lenl in let (v, d) = f () in let r = of_increasing_iterator_unchecked f lenr in Node { l; v; d; r; h = height l + 1 } let of_sorted_array_unchecked xs = let len = Array.length xs in let i = ref 0 in let f () = let x = xs.(!i) in incr i; x in of_increasing_iterator_unchecked f len (* The result can not be leaf *) let node l x d r = let hl = height l in let hr = height r in let h = if hl >= hr then hl + 1 else hr + 1 in Node { l; v = x; d; r; h } let bal l x d r = let hl = height l in let hr = height r in if hl > hr + 2 then let { l = ll; v = lv; d = ld; r = lr; _ } = ~!l in if height ll >= height lr then node ll lv ld (create lr x d r) else let { l = lrl; v = lrv; d = lrd; r = lrr; _ } = ~!lr in node (create ll lv ld lrl) lrv lrd (create lrr x d r) else if hr > hl + 2 then let { l = rl; v = rv; d = rd; r = rr; _ } = ~!r in if height rr >= height rl then node (create l x d rl) rv rd rr else let { l = rll; v = rlv; d = rld; r = rlr; _ } = ~!rl in node (create l x d rll) rlv rld (create rlr rv rd rr) else create l x d r let empty = Empty let[@inline] is_empty = function | Empty -> true | _ -> false type ('key, 'a) enumeration = | End | More of 'key * 'a * ('key, 'a) t0 * ('key, 'a) enumeration let rec cons_enum m e = match m with | Empty -> e | Leaf { v; d } -> More (v, d, empty, e) | Node { l; v; d; r; _ } -> cons_enum l (More (v, d, r, e)) let rec min_binding tree = match tree with | Empty -> raise Not_found | Leaf _ -> ~!!tree | Node { l = Empty; v; d; _ } -> (v, d) | Node { l; _ } -> min_binding l let rec min_binding_from_node_unsafe tree = let { l; v; d; _ } = ~!tree in match l with | Empty -> (v, d) | Leaf _ -> ~!!l | Node _ -> min_binding_from_node_unsafe l let rec min_binding_opt tree = match tree with | Empty -> None | Leaf { v; d } -> Some (v, d) | Node { l = Empty; v; d; _ } -> Some (v, d) | Node { l; _ } -> min_binding_opt l let rec max_binding tree = match tree with | Empty -> raise Not_found | Leaf _ -> ~!!tree | Node { v; d; r = Empty; _ } -> (v, d) | Node { r; _ } -> max_binding r let rec max_binding_opt tree = match tree with | Empty -> None | Leaf { v; d } -> Some (v, d) | Node { v; d; r = Empty; _ } -> Some (v, d) | Node { r; _ } -> max_binding_opt r let rec remove_min_binding_from_node_unsafe tree = let { l; v; d; r; _ } = ~!tree in match l with | Empty -> r | Leaf _ -> bal Empty v d r | Node _ -> bal (remove_min_binding_from_node_unsafe l) v d r (* Beware: those two functions assume that the added k is *strictly* smaller (or bigger) than all the present keys in the tree; it does not test for equality with the current min (or max) key. Indeed, they are only used during the "join" operation which respects this precondition. *) let rec add_min_node node tree = match tree with | Empty -> node | Leaf { v; d } -> sorted_two_nodes_larger node v d | Node { l; v; d; r; _ } -> bal (add_min_node node l) v d r let rec add_min_binding k x tree = match tree with | Empty -> singleton k x | Leaf _ -> sorted_two_nodes_smaller k x tree | Node { l; v; d; r; _ } -> bal (add_min_binding k x l) v d r let rec add_max_node node tree = match tree with | Empty -> node | Leaf { v; d; _ } -> sorted_two_nodes_smaller v d node | Node { l; v; d; r; _ } -> bal l v d (add_max_node node r) let rec add_max_binding k x tree = match tree with | Empty -> singleton k x | Leaf _ -> sorted_two_nodes_larger tree k x | Node { l; v; d; r; _ } -> bal l v d (add_max_binding k x r) let internal_merge t1 t2 = match (t1, t2) with | (Empty, t) -> t | (t, Empty) -> t | (Leaf _, t) -> add_min_node t1 t | (t, Leaf _) -> add_max_node t2 t | (Node _, Node _) -> let (x, d) = min_binding_from_node_unsafe t2 in bal t1 x d (remove_min_binding_from_node_unsafe t2) (* Same as create and bal, but no assumptions are made on the relative heights of l and r. *) let rec join l v d r = match (l, r) with | (Empty, _) -> add_min_binding v d r | (_, Empty) -> add_max_binding v d l | (Leaf _, Leaf _) -> Node { l; v; d; r; h = 2 } | (Leaf _, Node { l = rl; v = rv; d = rd; r = rr; h = rh }) -> if rh > 3 then bal (join l v d rl) rv rd rr else create l v d r | (Node { l = ll; v = lv; d = ld; r = lr; h = lh }, Leaf _) -> if lh > 3 then bal ll lv ld (join lr v d r) else create l v d r | ( Node { l = ll; v = lv; d = ld; r = lr; h = lh }, Node { l = rl; v = rv; d = rd; r = rr; h = rh } ) -> if lh > rh + 2 then bal ll lv ld (join lr v d r) else if rh > lh + 2 then bal (join l v d rl) rv rd rr else create l v d r (* Merge two trees l and r into one. All elements of l must precede the elements of r. No assumption on the heights of l and r. *) let concat t1 t2 = match (t1, t2) with | (Empty, t) -> t | (t, Empty) -> t | (Leaf _, t) -> add_min_node t1 t | (t, Leaf _) -> add_max_node t2 t | (Node _, Node _) -> let (x, d) = min_binding_from_node_unsafe t2 in join t1 x d (remove_min_binding_from_node_unsafe t2) let concat_or_join t1 v d t2 = match d with | Some d -> join t1 v d t2 | None -> concat t1 t2 let rec iter f = function | Empty -> () | Leaf { v; d } -> f v d | Node { l; v; d; r; _ } -> iter f l; f v d; iter f r let rec map f = function | Empty -> Empty | Leaf { v; d } -> let d' = f d in Leaf { v; d = d' } | Node { l; v; d; r; h } -> let l' = map f l in let d' = f d in let r' = map f r in Node { l = l'; v; d = d'; r = r'; h } let rec mapi f = function | Empty -> Empty | Leaf { v; d } -> let d' = f v d in Leaf { v; d = d' } | Node { l; v; d; r; h } -> let l' = mapi f l in let d' = f v d in let r' = mapi f r in Node { l = l'; v; d = d'; r = r'; h } let rec fold f m accu = match m with | Empty -> accu | Leaf { v; d } -> f v d accu | Node { l; v; d; r; _ } -> fold f r (f v d (fold f l accu)) let rec keys_aux accu tree = match tree with | Empty -> accu | Leaf { v; _ } -> v :: accu | Node { l; v; r; _ } -> keys_aux (v :: keys_aux accu r) l let keys s = keys_aux [] s let ordered_keys = keys let rec for_all p = function | Empty -> true | Leaf { v; d } -> p v d | Node { l; v; d; r; _ } -> p v d && for_all p l && for_all p r let rec exists p = function | Empty -> false | Leaf { v; d } -> p v d | Node { l; v; d; r; _ } -> p v d || exists p l || exists p r let rec filter p tree = match tree with | Empty -> Empty | Leaf { v; d } -> if p v d then tree else empty | Node { l; v; d; r; _ } as m -> (* call [p] in the expected left-to-right order *) let l' = filter p l in let pvd = p v d in let r' = filter p r in if pvd then if l == l' && r == r' then m else join l' v d r' else concat l' r' let rec cardinal = function | Empty -> 0 | Leaf _ -> 1 | Node { l; r; _ } -> cardinal l + 1 + cardinal r let rec bindings_aux accu tree = match tree with | Empty -> accu | Leaf _ -> ~!!tree :: accu | Node { l; v; d; r; _ } -> bindings_aux ((v, d) :: bindings_aux accu r) l let bindings s = bindings_aux [] s type ('k, 'v) t1 = ('k, 'v) t0 = | Empty | Leaf of { v: 'k; d: 'v; } | Node of { h: int; v: 'k; d: 'v; l: ('k, 'v) t0; r: ('k, 'v) t0; } module type OrderedType = sig type t val compare : t -> t -> int (* val equal : t -> t -> bool *) end module type S = sig type key type +'a t val empty : 'a t val is_empty : 'a t -> bool val mem : key -> 'a t -> bool val add : key -> 'a -> 'a t -> 'a t val update : key -> ('a option -> 'a option) -> 'a t -> 'a t val adjust : key -> ('a option -> 'a) -> 'a t -> 'a t val singleton : key -> 'a -> 'a t (* when [remove k map] failed to remove [k], the original [map] is returned *) val remove : key -> 'a t -> 'a t val merge : (key -> 'a option -> 'b option -> 'c option) -> 'a t -> 'b t -> 'c t val union : (key -> 'a -> 'a -> 'a option) -> 'a t -> 'a t -> 'a t val compare : ('a -> 'a -> int) -> 'a t -> 'a t -> int val equal : ('a -> 'a -> bool) -> 'a t -> 'a t -> bool val iter : (key -> 'a -> unit) -> 'a t -> unit val fold : (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b val for_all : (key -> 'a -> bool) -> 'a t -> bool val exists : (key -> 'a -> bool) -> 'a t -> bool val filter : (key -> 'a -> bool) -> 'a t -> 'a t val partition : (key -> 'a -> bool) -> 'a t -> 'a t * 'a t val cardinal : 'a t -> int val bindings : 'a t -> (key * 'a) list val min_binding : 'a t -> key * 'a val min_binding_opt : 'a t -> (key * 'a) option val max_binding : 'a t -> key * 'a val max_binding_opt : 'a t -> (key * 'a) option val keys : 'a t -> key list val ordered_keys : 'a t -> key list val ident_map_key : ?combine:('a -> 'a -> 'a) -> (key -> key) -> 'a t -> 'a t val choose : 'a t -> key * 'a val choose_opt : 'a t -> (key * 'a) option val split : key -> 'a t -> 'a t * 'a option * 'a t val find : key -> 'a t -> 'a val find_opt : key -> 'a t -> 'a option val map : ('a -> 'b) -> 'a t -> 'b t val mapi : (key -> 'a -> 'b) -> 'a t -> 'b t val of_increasing_iterator_unchecked : (unit -> key * 'a) -> int -> 'a t val of_sorted_array_unchecked : (key * 'a) array -> 'a t end module Make (Ord : OrderedType) : S with type key = Ord.t = struct type key = Ord.t type 'a t = (key, 'a) t1 let rec add x data m = match m with | Empty -> singleton x data | Leaf { v; d } -> let c = Ord.compare x v in if c = 0 then if d == data then m else Leaf { v; d = data } else if c < 0 then sorted_two_nodes_smaller x data m else sorted_two_nodes_larger m x data | Node { l; v; d; r; h } as m -> let c = Ord.compare x v in if c = 0 then if d == data then m else Node { l; v = x; d = data; r; h } else if c < 0 then let ll = add x data l in if l == ll then m else bal ll v d r else let rr = add x data r in if r == rr then m else bal l v d rr let rec find x = function | Empty -> raise Not_found | Leaf { v; d } -> let c = Ord.compare x v in if c = 0 then d else raise Not_found | Node { l; v; d; r; _ } -> let c = Ord.compare x v in if c = 0 then d else find x ( if c < 0 then l else r ) let rec find_opt x = function | Empty -> None | Leaf { v; d } -> let c = Ord.compare x v in if c = 0 then Some d else None | Node { l; v; d; r; _ } -> let c = Ord.compare x v in if c = 0 then Some d else find_opt x ( if c < 0 then l else r ) let rec mem x = function | Empty -> false | Leaf { v; _ } -> Ord.compare x v = 0 | Node { l; v; r; _ } -> let c = Ord.compare x v in c = 0 || mem x ( if c < 0 then l else r ) let rec remove x tree = match tree with | Empty -> tree | Leaf { v; _ } -> let c = Ord.compare x v in if c = 0 then empty else tree | Node { l; v; d; r; _ } as m -> let c = Ord.compare x v in if c = 0 then internal_merge l r else if c < 0 then let ll = remove x l in if l == ll then m else bal ll v d r else let rr = remove x r in if r == rr then m else bal l v d rr let rec adjust x (f : 'a option -> 'a) tree = match tree with | Empty -> let data = f None in singleton x data | Leaf { v; d } -> (* check *) let c = Ord.compare x v in if c = 0 then let data = f (Some d) in if d == data then tree else Leaf { v; d = data } else let data = f None in if c < 0 then sorted_two_nodes_smaller x data tree else sorted_two_nodes_larger tree x data | Node { l; v; d; r; h } as m -> let c = Ord.compare x v in if c = 0 then let data = f (Some d) in if d == data then m else Node { l; v = x; d = data; r; h } else if c < 0 then let ll = adjust x f l in if l == ll then m else bal ll v d r else let rr = adjust x f r in if r == rr then m else bal l v d rr let rec update x f tree = match tree with | Empty -> begin match f None with | None -> Empty | Some data -> singleton x data end | Leaf { v; d } -> (* check *) let c = Ord.compare x v in if c = 0 then match f (Some d) with | None -> empty (* It exists, None means deletion *) | Some data -> if d == data then tree else Leaf { v; d = data } else begin match f None with | None -> tree | Some data -> if c < 0 then sorted_two_nodes_smaller x data tree else sorted_two_nodes_larger tree x data end | Node { l; v; d; r; h } as m -> let c = Ord.compare x v in if c = 0 then match f (Some d) with | None -> internal_merge l r | Some data -> if d == data then m else Node { l; v = x; d = data; r; h } else if c < 0 then let ll = update x f l in if l == ll then m else bal ll v d r else let rr = update x f r in if r == rr then m else bal l v d rr let rec split x tree = match tree with | Empty -> (Empty, None, Empty) | Leaf { v; d } -> let c = Ord.compare x v in if c = 0 then (empty, Some d, empty) else if c < 0 then (empty, None, tree) else (tree, None, empty) | Node { l; v; d; r; _ } -> let c = Ord.compare x v in if c = 0 then (l, Some d, r) else if c < 0 then let (ll, pres, rl) = split x l in (ll, pres, join rl v d r) else let (lr, pres, rr) = split x r in (join l v d lr, pres, rr) let rec merge f s1 s2 = match (s1, s2) with | (Empty, Empty) -> Empty | (Leaf { v; d }, Empty) -> begin match f v (Some d) None with | None -> empty | Some data -> Leaf { v; d = data } end | (Empty, Leaf { v; d }) -> begin match f v None (Some d) with | None -> empty | Some data -> Leaf { v; d = data } end | (Leaf { v = v1; d = d1 }, Leaf _) -> let (l2, d2, r2) = split v1 s2 in concat_or_join (merge f empty l2) v1 (f v1 (Some d1) d2) (merge f empty r2) | (Node { l = l1; v = v1; d = d1; r = r1; h = h1 }, _) when h1 >= height s2 -> let (l2, d2, r2) = split v1 s2 in concat_or_join (merge f l1 l2) v1 (f v1 (Some d1) d2) (merge f r1 r2) | (_, Node { l = l2; v = v2; d = d2; r = r2; _ }) -> let (l1, d1, r1) = split v2 s1 in concat_or_join (merge f l1 l2) v2 (f v2 d1 (Some d2)) (merge f r1 r2) | (Node _, (Empty | Leaf _)) -> assert false let rec union f s1 s2 = match (s1, s2) with | (Empty, s) | (s, Empty) -> s | (s, Leaf { v; d }) -> update v (fun d2 -> match d2 with | None -> Some d | Some d2 -> f v d2 d) s | (Leaf { v; d }, s) -> (* add v d s *) update v (fun d2 -> match d2 with | None -> Some d | Some d2 -> f v d d2) s | ( Node { l = l1; v = v1; d = d1; r = r1; h = h1 }, Node { l = l2; v = v2; d = d2; r = r2; h = h2 } ) -> if h1 >= h2 then let (l2, d2, r2) = split v1 s2 in let l = union f l1 l2 and r = union f r1 r2 in match d2 with | None -> join l v1 d1 r | Some d2 -> concat_or_join l v1 (f v1 d1 d2) r else let (l1, d1, r1) = split v2 s1 in let l = union f l1 l2 and r = union f r1 r2 in (match d1 with | None -> join l v2 d2 r | Some d1 -> concat_or_join l v2 (f v2 d1 d2) r) let rec partition p tree = match tree with | Empty -> (Empty, Empty) | Leaf { v; d } -> if p v d then (tree, empty) else (empty, tree) | Node { l; v; d; r; _ } -> (* call [p] in the expected left-to-right order *) let (lt, lf) = partition p l in let pvd = p v d in let (rt, rf) = partition p r in if pvd then (join lt v d rt, concat lf rf) else (concat lt rt, join lf v d rf) let compare cmp m1 m2 = let rec compare_aux e1 e2 = match (e1, e2) with | (End, End) -> 0 | (End, _) -> -1 | (_, End) -> 1 | (More (v1, d1, r1, e1), More (v2, d2, r2, e2)) -> let c = Ord.compare v1 v2 in if c <> 0 then c else let c = cmp d1 d2 in if c <> 0 then c else compare_aux (cons_enum r1 e1) (cons_enum r2 e2) in compare_aux (cons_enum m1 End) (cons_enum m2 End) let equal cmp m1 m2 = let rec equal_aux e1 e2 = match (e1, e2) with | (End, End) -> true | (End, _) -> false | (_, End) -> false | (More (v1, d1, r1, e1), More (v2, d2, r2, e2)) -> Ord.compare v1 v2 = 0 && cmp d1 d2 && equal_aux (cons_enum r1 e1) (cons_enum r2 e2) in equal_aux (cons_enum m1 End) (cons_enum m2 End) let cardinal = cardinal let bindings = bindings let keys = keys let choose = min_binding let choose_opt = min_binding_opt let empty = empty let singleton = singleton let is_empty = is_empty let min_binding = min_binding let min_binding_opt = min_binding_opt let max_binding = max_binding let max_binding_opt = max_binding_opt let fold = fold let iter = iter let for_all = for_all let exists = exists let mapi = mapi let map = map let filter = filter let ordered_keys = keys let of_increasing_iterator_unchecked = of_increasing_iterator_unchecked let of_sorted_array_unchecked = of_sorted_array_unchecked let ident_map_key ?combine f map = let (map_, changed) = fold (fun key item (map_, changed) -> let new_key = f key in ( (* add ?combine new_key item map_ *) (match combine with | None -> add new_key item map_ | Some combine -> adjust new_key (fun opt -> match opt with | None -> item | Some old_value -> combine old_value item) map_), changed || new_key != key )) map (empty, false) in if changed then map_ else map end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>