package mc2
A mcsat-based SMT solver in pure OCaml
Install
Dune Dependency
Authors
Maintainers
Sources
v0.1.tar.gz
md5=92de696251ec76fbf3eba6ee917fd80f
sha512=e88ba0cfc23186570a52172a0bd7c56053273941eaf3cda0b80fb6752e05d1b75986b01a4e4d46d9711124318e57cba1cd92d302e81d34f9f1ae8b49f39114f0
doc/src/mc2.unin_sort/Mc2_unin_sort.ml.html
Source file Mc2_unin_sort.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
(** {1 Uninterpreted Functions and Types} *) open Mc2_core module Fmt = CCFormat let name = "unin_sort" let k_decl_sort = Service.Key.make "unin_sort.decl" let k_make = Service.Key.make "unin_sort.make" let k_eq = Service.Key.make "unin_sort.eq" (* reason why [t != v] or [t = v] for some value v *) type reason = { other: term; atom: atom; (* t≠other or t=other *) lvl: level; } (* list of unit constraints for a term. Each constraint maps a value to a list of reasons why the term cannot be this value *) type unit_constraints = | C_none | C_diseq of { tbl: reason Value.Tbl.t; } (** Term is none of these values *) | C_eq of { value: value; reason: reason; } (** Term equal value *) (* current knowledge for a value of an uninterpreted type *) type decide_state += | DS of { mutable c_list : unit_constraints; (* constraints on the term. *) } (* uninterpreted types *) type ty_view += | Unin of { id: ID.t; args: Type.t list; } (* equality between uninterpreted types *) type term_view += | Eq of term * term (* extend values with unintepreted sorts *) type value_view += | V_unin of int type lemma_view += | Transitivity let tc_lemma = let pp out = function | Transitivity -> Fmt.string out "transitivity_eq" | _ -> assert false in Lemma.TC.make ~pp () let[@inline] c_list_as_seq (tbl:reason Value.Tbl.t) : (value * reason) Iter.t = Value.Tbl.to_iter tbl let pp_v_reason_eq out (v,rn): unit = Fmt.fprintf out "(@[eq:v %a@ :lvl %d@ :other %a@ :eqn %a@])" Value.pp v rn.lvl Term.debug rn.other Atom.debug rn.atom let pp_v_reason_neq out (v,rn): unit = Fmt.fprintf out "(@[diff :v %a@ :lvl %d@ :other %a@ :diseqn %a@])" Value.pp v rn.lvl Term.debug rn.other Atom.debug rn.atom let pp_c_list out (c_l:unit_constraints) = match c_l with | C_none -> Fmt.string out "ø" | C_eq {value;reason;_} -> Fmt.fprintf out "%a" pp_v_reason_eq(value,reason) | C_diseq {tbl} -> Fmt.fprintf out "{@[<hv>%a@]}" (Util.pp_iter pp_v_reason_neq) (c_list_as_seq tbl) (* values for uninterpreted sorts *) module V = struct let[@inline] get_v = function V_unin i -> i | _ -> assert false let[@inline] get (v:value): int = get_v (Value.view v) let[@inline] tcv_pp out v = Fmt.fprintf out "$v_%d" (get_v v) let[@inline] tcv_hash v = CCHash.int (get_v v) let[@inline] tcv_equal v1 v2 = match v1, v2 with | V_unin i, V_unin j -> i=j | _ -> false let tc_value = Value.TC.make ~pp:tcv_pp ~equal:tcv_equal ~hash:tcv_hash () let[@inline] mk (i:int) : value = Value.make tc_value (V_unin i) end let build p_id (Plugin.S_cons (_, true_, Plugin.S_nil)) : Plugin.t = let tc = Term.TC.lazy_make () in let ty_tc = Type.TC.lazy_make () in (* equality literals *) let module Term_alloc = Term.Term_allocator(struct let tc = tc let initial_size = 64 let p_id = p_id let equal a b = match a, b with | Eq (a1,b1), Eq (a2,b2) -> Term.equal a1 a2 && Term.equal b1 b2 | _ -> false let hash = function | Eq (a,b) -> CCHash.combine3 10 (Term.hash a) (Term.hash b) | _ -> assert false end) in (* uninterpreted types *) let module Ty_alloc = Type.Alloc(struct let tc = ty_tc let initial_size = 16 let hash = function | Unin {id;args;_} -> CCHash.combine3 10 (ID.hash id) (CCHash.list Type.hash args) | _ -> assert false let equal a b = match a, b with | Unin {id=f1;args=l1;_}, Unin {id=f2;args=l2;_} -> ID.equal f1 f2 && CCList.equal Type.equal l1 l2 | _ -> false end) in let module P : Plugin.S = struct let id = p_id let name = name let check_if_sat _ = Sat let gc_all = Term_alloc.gc_all let iter_terms = Term_alloc.iter_terms (* uninterpreted sorts, with arity *) let tbl_ : int ID.Tbl.t = ID.Tbl.create 16 (* declare a new (parametric) uninterpreted type *) let decl_sort id (arity:int) : unit = Log.debugf 3 (fun k->k "(@[unin_sort.@{<yellow>declare-sort@} %a@ :arity %d@])" ID.pp id arity); if ID.Tbl.mem tbl_ id then ( Error.errorf "sort %a already declared" ID.pp id; ); ID.Tbl.add tbl_ id arity let[@inline] is_unin_sort (ty:Type.t) : bool = match ty with | Ty {view=Unin _; _} -> true | _ -> false let pp out = function | Eq(a,b) -> Fmt.fprintf out "(@[<hv>=@ %a@ %a@])" Term.pp a Term.pp b | _ -> assert false let subterms v yield = match v with | Eq(a,b) -> yield a; yield b | _ -> assert false (* make an equality literal *) let mk_eq (t:term) (u:term): term = if not (is_unin_sort (Term.ty t)) then ( Error.errorf "unin_sort.eq:@ expected term of an uninterpreted sort,@ got %a" Term.debug t ); if not (Type.equal (Term.ty t) (Term.ty u)) then ( Error.errorf "unin_sort.eq:@ terms should have same type,@ got %a@ and %a" Term.debug t Term.debug u ); if Term.equal t u then true_ (* auto-simplify *) else ( let view = if Term.id t < Term.id u then Eq (t,u) else Eq (u,t) in Term_alloc.make view Type.bool ) (* evaluate equality *) let eval (t:term) : eval_res = match Term.view t with | Eq (a, b) when Term.equal a b -> Eval_into (Value.true_, []) | Eq (a, b) -> begin match Term.value a, Term.value b with | Some va, Some vb -> Eval_into (Value.equal va vb |> Value.of_bool, [a;b]) | _ -> Eval_unknown end | _ -> assert false type conflict_opt = | Conflict_none | Conflict_eq_eq of {other:term; eqn:atom} (* atom is equal to both values *) | Conflict_eq_neq of {other:term; diseqn:atom} (* atom is equal and disequal to value. arg=Diseq *) | Conflict_neq_eq of {other:term; eqn:atom} (* atom is equal and disequal to value. arg=Eq *) (* find a conflicting constraints in [l] for [t=v] *) let find_conflict_eq_ (v:value) (l:unit_constraints) : conflict_opt = begin match l with | C_none -> Conflict_none | C_diseq {tbl} -> begin match Value.Tbl.find tbl v with | {atom;other;_} -> assert (Atom.is_neg atom); Conflict_eq_neq {diseqn=atom;other} | exception Not_found -> Conflict_none end | C_eq {value=v2;reason={other;atom;_};_} -> if Value.equal v v2 then ( Conflict_none ) else ( assert (Atom.is_pos atom); Conflict_eq_eq {eqn=atom;other} ) end (* find a conflicting constraints in [l] for [t≠v] *) let find_conflict_diseq_ (v:value) (l:unit_constraints) : conflict_opt = begin match l with | C_eq {value;reason={atom;other;_};_} -> if Value.equal v value then Conflict_neq_eq {eqn=atom;other} else Conflict_none | C_none | C_diseq _ -> Conflict_none (* no conflict between diseq *) end (* propagate [t := v because eqn] *) let add_singleton acts t v ~eqn ~other : unit = begin match Term.decide_state_exn t with | DS ds -> Log.debugf 15 (fun k->k "(@[<hv>%s.add_singleton@ :to %a@ :val %a@ :other %a@ :eqn %a@ :c_list %a@])" name Term.debug t Value.pp v Term.debug other Atom.debug eqn pp_c_list ds.c_list); (* first, check if SAT *) begin match find_conflict_eq_ v ds.c_list with | Conflict_neq_eq _ -> assert false | Conflict_eq_eq {eqn=eqn';other=other'} -> (* conflict! two distinct "singleton" *) let eq_deduce = Term.Bool.mk_eq other other' in let conflict = [ eq_deduce; Atom.neg eqn; Atom.neg eqn'; ] and lemma = Lemma.make Transitivity tc_lemma in Actions.raise_conflict acts conflict lemma | Conflict_eq_neq {other=other';diseqn} -> (* conflict! one singleton, one diff, same value *) let neq_side = Term.Bool.mk_neq other other' in let conflict = [ Atom.neg diseqn; Atom.neg eqn; neq_side; ] and lemma = Lemma.make Transitivity tc_lemma in Actions.raise_conflict acts conflict lemma | Conflict_none -> () end; (* just add constraint *) let lvl = max (Atom.level eqn) (Term.level other) in let old_c_list = ds.c_list in Actions.on_backtrack acts (fun () -> ds.c_list <- old_c_list); let r = {other;atom=eqn;lvl} in begin match ds.c_list with | C_none -> ds.c_list <- C_eq {value=v;reason=r}; | C_eq _ -> () (* do not change *) | C_diseq _ -> ds.c_list <- C_eq {value=v;reason=r}; end; Log.debugf 30 (fun k->k "(@[<hv>%s.add_singleton.done@ :to %a@ :c_list %a@])" name Term.debug t pp_c_list ds.c_list); | _ -> assert false end (* add constraint [t != v because diseqn] *) let add_diff acts t v ~diseqn ~other : unit = begin match Term.decide_state_exn t with | DS ds -> Log.debugf 15 (fun k->k "(@[<hv>%s.add_diff@ :to %a@ :val %a@ :other %a@ :diseqn %a@ :c_list %a@])" name Term.debug t Value.pp v Term.debug other Atom.debug diseqn pp_c_list ds.c_list); (* first, check if SAT *) begin match find_conflict_diseq_ v ds.c_list with | Conflict_eq_eq _ | Conflict_eq_neq _ -> assert false | Conflict_neq_eq {eqn;other=other'} -> (* conflict! one singleton, one diff, same value *) let neq_side = Term.Bool.mk_neq other other' in let conflict = [ Atom.neg diseqn; Atom.neg eqn; neq_side; ] and lemma = Lemma.make Transitivity tc_lemma in Actions.raise_conflict acts conflict lemma | Conflict_none -> () end; let add_tbl tbl = if not (Value.Tbl.mem tbl v) then ( Actions.on_backtrack acts (fun () -> Value.Tbl.remove tbl v); let lvl = max (Atom.level diseqn) (Term.level other) in Value.Tbl.add tbl v {other;atom=diseqn;lvl}; ) in (* add constraint *) begin match ds.c_list with | C_eq _ -> () | C_diseq {tbl} -> add_tbl tbl | C_none -> (* lazy initialization *) let tbl = Value.Tbl.create 6 in ds.c_list <- C_diseq {tbl}; add_tbl tbl end | _ -> assert false end (* check if term now evaluates, or if it becomes a unit constraint *) let update_watches acts (eqn:term) ~watch:_ = match Term.view eqn with | Eq (a,b) -> begin match Term.value eqn, Term.value a, Term.value b with | Some V_true, Some value, None -> add_singleton acts b value ~eqn:(Term.Bool.pa eqn) ~other:a | Some V_true, None, Some value -> add_singleton acts a value ~eqn:(Term.Bool.pa eqn) ~other:b | Some V_false, Some value, None -> add_diff acts b value ~diseqn:(Term.Bool.na eqn) ~other:a | Some V_false, None, Some value -> add_diff acts a value ~diseqn:(Term.Bool.na eqn) ~other:b | _, Some _, Some _ -> (* semantic propagation *) begin match eval eqn with | Eval_unknown -> assert false | Eval_into (v, subs) -> let b = Value.as_bool_exn v in Actions.propagate_bool_eval acts eqn b ~subs end | _ -> () end; Watch_keep | _ -> assert false (* [a=b] watches [a,b, a=b] *) let init _ (t:term) = match Term.view t with | Eq (a,b) -> Term.add_watch a t; Term.add_watch b t; Term.add_watch t t; | _ -> assert false (* find a value that is authorized by the list of constraints *) let[@inline] find_value (l:unit_constraints): value = match l with | C_none -> V.mk 0 | C_eq {value;_} -> value | C_diseq {tbl} -> (* is [i] forbidden by [l]? *) let[@inline] forbidden v = Value.Tbl.mem tbl v in let v = Iter.(0 -- max_int) |> Iter.map (fun i -> V.mk i) |> Iter.filter (fun v -> not (forbidden v)) |> Iter.head_exn in v (* how to make a decision for terms of uninterpreted type *) let decide (acts:actions) (t:term) : value = begin match Term.decide_state_exn t with | DS{c_list} -> let v = find_value c_list in Log.debugf 5 (fun k->k "(@[<hv>%s.@{<yellow>decide@}@ :term %a@ :val %a@ :lvl %d@ :c_list %a@])" name Term.debug t Value.pp v (Actions.level acts) pp_c_list c_list); v | _ -> assert false end let pp_ty out = function | Unin {id;args=[];_} -> ID.pp out id | Unin {id;args;_} -> Format.fprintf out "(@[%a@ %a@])" ID.pp id (Util.pp_list Type.pp) args | _ -> assert false (* new state: empty list of constraints *) let[@inline] mk_state () = DS {c_list=C_none} (* make a concrete instance of the type *) let make_sort (id:ID.t) (args:Type.t list) : Type.t = begin match ID.Tbl.get tbl_ id with | Some ar when ar=List.length args -> Ty_alloc.make (Unin {id;args}) | Some ar -> Error.errorf "wrong arity for sort %a:@ need %d args,@ got (@[%a@])" ID.pp id ar (Util.pp_list Type.pp) args | None -> Error.errorf "no uninterpreted sort for %a" ID.pp id end let () = Term.TC.lazy_complete ~pp ~subterms ~update_watches ~init ~eval tc; Type.TC.lazy_complete ~pp:pp_ty ~decide ~mk_state ~eq:mk_eq ty_tc; () let provided_services = [ Service.Any (k_decl_sort, decl_sort); Service.Any (k_make, make_sort); Service.Any (k_eq, mk_eq) ] end in (module P : Plugin.S) let plugin = Plugin.Factory.make ~priority:5 ~name ~requires:Plugin.(K_cons (Builtins.k_true, K_nil)) ~build ()
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>