package mc2
A mcsat-based SMT solver in pure OCaml
Install
Dune Dependency
Authors
Maintainers
Sources
v0.1.tar.gz
md5=92de696251ec76fbf3eba6ee917fd80f
sha512=e88ba0cfc23186570a52172a0bd7c56053273941eaf3cda0b80fb6752e05d1b75986b01a4e4d46d9711124318e57cba1cd92d302e81d34f9f1ae8b49f39114f0
doc/src/mc2.lra/Mc2_lra.ml.html
Source file Mc2_lra.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
(** {1 Linear Rational Arithmetic} *) (* Reference: http://smtlib.cs.uiowa.edu/logics-all.shtml#QF_LRA *) open Mc2_core (* FIXME: carry state instead *) let _ = Random.self_init (); module LE = Linexp open LE.Infix let name = "lra" (* TODO: put this in some config instead *) let lra_alt = ref 0 let set_lra_alt b = Log.debugf 10 (fun k->k "lra_alt %i" b); lra_alt := b type num = Q.t type ty_view += | Ty_rat type value_view += | V_rat of num (** Boolean operator for predicates *) type op = | Eq0 | Leq0 | Lt0 (* a single constraint on a Q-sorted variables *) type constr = | C_leq | C_lt | C_geq | C_gt | C_eq | C_neq type term_view += | Const of num | Pred of { op: op; expr: LE.t; mutable watches: Term.Watch2.t; (* can sometimes propagate *) } (** Arithmetic constraint *) (* reason of bound *) type reason = | Atom of atom (* atomic reason aka equality / inequality / disequality *) let debug_reason out = function | Atom a -> Atom.debug out a let atomic_reason : (reason -> atom) = function | Atom a -> a type bound = | B_some of {strict:bool; num: num; expr: LE.t; reason:reason} | B_none (* no bound *) type eq_cstr = | EC_eq of {num:num; reason:atom; expr: LE.t} | EC_neq of {l: (num * LE.t * atom) list} (* forbidden values *) | EC_none (* state for a single Q-sorted variable *) type decide_state += | State of { mutable last_val: num; (* phase saving *) mutable low: bound; mutable up: bound; mutable eq: eq_cstr; } type lemma_view += | Lemma_lra let k_rat = Service.Key.makef "%s.rat" name let k_make_const = Service.Key.makef "%s.make_const" name let k_make_pred = Service.Key.makef "%s.make_pred" name let[@inline] equal_op a b = begin match a, b with | Eq0, Eq0 | Leq0, Leq0 | Lt0, Lt0 -> true | Eq0, _ | Leq0, _ | Lt0, _ -> false end let[@inline] hash_op a = match a with | Eq0 -> 0 | Leq0 -> 1 | Lt0 -> 2 (* evaluate a linexp into a number *) let[@inline] eval_le (e:LE.t) : (num * term list) option = LE.eval e ~f:(fun t -> match Term.value t with | Some (V_value {view=V_rat n;_}) -> Some n | _ -> None) let tc_value = let pp out = function | V_rat q -> Q.pp_print out q | _ -> assert false and equal a b = match a, b with | V_rat a, V_rat b -> Q.equal a b | _ -> false and hash = function | V_rat r -> LE.hash_q r | _ -> assert false in Value.TC.make ~pp ~equal ~hash () let[@inline] mk_val (n:num) : value = Value.make tc_value (V_rat n) (* evaluate the linear expression precondition: all terms in it are assigned *) let[@inline] eval_le_num_exn (e:LE.t) : num = match eval_le e with | Some (n,_) -> n | None -> assert false let pp_ty out = function Ty_rat -> Fmt.fprintf out "@<1>ℚ" | _ -> assert false let mk_state _ : decide_state = State { last_val=Q.zero; up=B_none; low=B_none; eq=EC_none; } let pp_constr out (e:constr) = match e with | C_leq -> Fmt.string out "≤" | C_lt -> Fmt.string out "<" | C_geq -> Fmt.string out "≥" | C_gt -> Fmt.string out ">" | C_eq -> Fmt.string out "=" | C_neq -> Fmt.string out "≠" let pp_bound out = function | B_none -> Fmt.string out "ø" | B_some {strict;num;reason;expr} -> let strict_str = if strict then "[strict]" else "" in Fmt.fprintf out "(@[%a%s@ :expr %a@ :reason %a@])" Q.pp_print num strict_str LE.pp expr debug_reason reason let pp_eq out = function | EC_none -> Fmt.string out "ø" | EC_eq {num;reason;expr} -> Fmt.fprintf out "(@[= %a@ :expr %a@ :reason %a@])" Q.pp_print num LE.pp expr Atom.debug reason | EC_neq {l} -> let pp_tuple out (n,e,a) = Fmt.fprintf out "(@[%a@ :expr %a@ :reason %a@])" Q.pp_print n LE.pp e Atom.debug a in Fmt.fprintf out "(@[<hv>!=@ %a@])" (Util.pp_list pp_tuple) l let pp_state out = function | State s -> Fmt.fprintf out "(@[<hv>:low %a@ :up %a@ :eq %a@])" pp_bound s.low pp_bound s.up pp_eq s.eq | _ -> assert false let[@inline] subterms (t:term_view) : term Iter.t = match t with | Const _ -> Iter.empty | Pred {expr=e;_} -> LE.terms e | _ -> assert false let pp_op out = function | Eq0 -> Fmt.string out "= 0" | Leq0 -> Fmt.string out "≤ 0" | Lt0 -> Fmt.string out "< 0" let pp_term out = function | Const n -> Q.pp_print out n | Pred {op;expr;_} -> Fmt.fprintf out "(@[%a@ %a@])" LE.pp_no_paren expr pp_op op | _ -> assert false (* evaluate [op n] where [n] is a constant *) let[@inline] eval_bool_const op n : bool = begin match Q.sign n, op with | 0, Eq0 -> true | n, Leq0 when n<=0 -> true | n, Lt0 when n<0 -> true | _ -> false end (* evaluate an arithmetic boolean expression *) let eval (t:term) = match Term.view t with | Const n -> Log.debugf 20 (fun k->k "lra.eval Const %a" Term.debug t); Eval_into (mk_val n, []) | Pred {op;expr=e;_} -> begin match eval_le e with | None -> Log.debugf 20 (fun k->k "lra.eval None %a" Term.debug t); Eval_unknown | Some (n,l) -> Log.debugf 20 (fun k->k "lra.eval %a = Some %a" Term.debug t Q.pp_print n); Eval_into (Value.of_bool @@ eval_bool_const op n, l) end | _ -> assert false let tc_lemma : tc_lemma = Lemma.TC.make ~pp:(fun out l -> match l with | Lemma_lra -> Fmt.string out "lra" | _ -> assert false) () let lemma_lra = Lemma.make Lemma_lra tc_lemma (* build plugin *) let build p_id (Plugin.S_cons (_,true_, Plugin.S_cons (_,false_,Plugin.S_nil))) : Plugin.t = let tc_t = Term.TC.lazy_make() in let tc_ty = Type.TC.lazy_make() in let module T = Term.Term_allocator(struct let tc = tc_t let initial_size = 64 let p_id = p_id let equal a b = match a, b with | Const n1, Const n2 -> Q.equal n1 n2 | Pred p1, Pred p2 -> p1.op = p2.op && LE.equal p1.expr p2.expr | _ -> false let hash = function | Const n -> LE.hash_q n | Pred {op;expr;_} -> CCHash.combine3 10 (hash_op op) (LE.hash expr) | _ -> assert false end) in let module P = struct let id = p_id let name = name let gc_all = T.gc_all let iter_terms = T.iter_terms let check_if_sat _ = Sat let ty_rat = lazy ( let tc = Type.TC.lazy_get tc_ty in Type.make_static Ty_rat tc ) (* build a predicate on a linear expression *) let mk_pred (op:op) (e:LE.t) : term = begin match LE.as_const e with | Some n -> (* directly evaluate *) if eval_bool_const op n then true_ else false_ | None -> (* simplify: if e is [n·x op 0], then rewrite into [sign(n)·x op 0] *) let e = match LE.as_singleton e with | None -> e | Some (n,t) -> let n = if Q.sign n >= 0 then Q.one else Q.minus_one in LE.singleton n t in let view = Pred {op; expr=e; watches=Term.Watch2.dummy} in let ans = T.make view Type.bool in Term.set_weight ans ((Term.weight ans) -. 1e30); ans end let mk_const (n:num) : term = T.make (Const n) (Lazy.force ty_rat) (* raise a conflict that deduces [expr_up_bound - expr_low_bound op 0] (which must eval to [false]) from [reasons] *) let raise_conflict acts ~sign ~op ~pivot ~expr_up_bound ~expr_low_bound ~(reasons: atom list) () : 'a = let expr = LE.diff expr_low_bound expr_up_bound in assert (not (LE.mem_term pivot expr)); let concl = mk_pred op expr in let concl = if sign then Term.Bool.pa concl else Term.Bool.na concl in let c = concl :: List.map Atom.neg reasons in Log.debugf 30 (fun k->k "(@[<hv>lra.raise_conflict@ :pivot %a@ :expr %a %a@ \ :e_up_b %a@ :e_low_b %a@ \ :reasons (@[<v>%a@])@ :clause %a@])" Term.debug pivot LE.pp expr pp_op op LE.pp expr_up_bound LE.pp expr_low_bound (Util.pp_list Atom.debug) reasons Clause.debug_atoms c); Actions.raise_conflict acts c lemma_lra (* [make op e t ~reason b] turns this unit constraint over [t] (which is true or false according to [b]) into a proper unit constraint *) let constr_of_unit (op:op) (e:LE.t) (t:term) (b:bool) : constr * LE.t * num = let coeff = LE.find_term_exn t e in let is_pos = Q.sign coeff >= 0 in (* [e' = - e / coeff] *) let e' = LE.mult (Q.div Q.minus_one coeff) (LE.remove_term t e) in let num = eval_le_num_exn e' in (* assuming [b=true] and [is_pos], we have that reason is the same in the current model as [op(t + num)] *) begin match op, b, is_pos with | Eq0, true, _ -> C_eq | Eq0, false, _ -> C_neq | Leq0, true, true -> C_leq | Leq0, true, false -> C_geq | Leq0, false, true -> C_gt | Leq0, false, false -> C_lt | Lt0, true, true -> C_lt | Lt0, true, false -> C_gt | Lt0, false, true -> C_geq | Lt0, false, false -> C_leq end, e', num (* check that there isn't a conflict of the shape [a <= t <= a, t != a] *) let check_tight_bound acts t : unit = match Term.decide_state_exn t with | State s -> begin match s.low, s.up, s.eq with | B_some low, B_some up, EC_neq {l} when Q.equal low.num up.num && List.exists (fun (n,_,_) -> Q.equal low.num n) l -> assert (not low.strict); assert (not up.strict); let reason_neq, expr_neq = CCList.find_map (fun (n,e,r) -> if Q.equal low.num n then Some (r,e) else None) l |> CCOpt.get_exn in Log.debugf 30 (fun k->k "(@[<hv>lra.raise_conflict.tight-bound@ \ @[:term %a@]@ @[low: %a@]@ @[up: %a@]@ @[eq: %a@]@ \ expr-low %a@ expr-up %a@ expr-neq: %a@])" Term.pp t pp_bound s.low pp_bound s.up pp_eq s.eq LE.pp low.expr LE.pp up.expr LE.pp expr_neq); (* conflict is: [low <= t & t <= up & t != neq ===> (low < neq \/ neq < up)] *) let case1 = mk_pred Lt0 (LE.diff low.expr expr_neq) and case2 = mk_pred Lt0 (LE.diff expr_neq up.expr) in (* conflict should be: [low <= t & t <= up & low=up => t = neq]. *) let c = Term.Bool.pa case1 :: Term.Bool.pa case2 :: List.rev_map Atom.neg [atomic_reason low.reason; atomic_reason up.reason; reason_neq] in Actions.raise_conflict acts c lemma_lra | _ -> () end | _ -> assert false (* add upper bound *) let add_up acts ~strict t num ~expr ~(reason:reason) : unit = Log.debugf 30 (fun k->k "add_up"); match Term.decide_state_exn t with | State s -> (* check consistency *) begin match s.eq, s.low with | EC_eq eq, _ when (strict && Q.compare eq.num num >= 0) || (not strict && Q.compare eq.num num > 0) -> raise_conflict acts ~sign:true ~op:(if strict then Lt0 else Leq0) ~pivot:t ~expr_up_bound:expr ~expr_low_bound:eq.expr ~reasons:[atomic_reason reason; eq.reason] () | _, B_some b when ((strict || b.strict) && Q.compare b.num num >= 0) || (Q.compare b.num num > 0) -> raise_conflict acts ~sign:true ~op:(if strict || b.strict then Lt0 else Leq0) ~pivot:t ~expr_up_bound:expr ~expr_low_bound:b.expr ~reasons:[atomic_reason reason; atomic_reason b.reason] () | _ -> () end; (* update *) let old_b = s.up in Actions.on_backtrack acts (fun () -> s.up <- old_b); begin match s.up with | B_none -> s.up <- B_some {strict;num;reason;expr}; check_tight_bound acts t; | B_some b -> (* only replace if more tight *) if Q.compare b.num num > 0 || (strict && not b.strict && Q.equal b.num num) then ( s.up <- B_some {strict;num;reason;expr}; check_tight_bound acts t; ) end; | _ -> assert false (* add lower bound *) let add_low acts ~strict t num ~expr ~(reason:reason) : unit = Log.debugf 30 (fun k->k "add_low"); match Term.decide_state_exn t with | State s -> (* check consistency *) begin match s.eq, s.up with | EC_eq eq, _ when (strict && Q.compare eq.num num <= 0) || (not strict && Q.compare eq.num num < 0) -> raise_conflict acts ~sign:true ~op:(if strict then Lt0 else Leq0) ~pivot:t ~expr_low_bound:expr ~expr_up_bound:eq.expr ~reasons:[atomic_reason reason; eq.reason] () | _, B_some b when ((strict || b.strict) && Q.compare b.num num <= 0) || (Q.compare b.num num < 0) -> raise_conflict acts ~sign:true ~op:(if strict || b.strict then Lt0 else Leq0) ~pivot:t ~expr_low_bound:expr ~expr_up_bound:b.expr ~reasons:[atomic_reason reason; atomic_reason b.reason] () | _ -> () end; (* update state *) let old_b = s.low in Actions.on_backtrack acts (fun () -> s.low <- old_b); begin match s.low with | B_none -> s.low <- B_some {strict;num;reason;expr}; check_tight_bound acts t; | B_some b -> (* only replace if more tight *) if Q.compare b.num num < 0 || (strict && not b.strict && Q.equal b.num num) then ( s.low <- B_some {strict;num;reason;expr}; check_tight_bound acts t; ) end | _ -> assert false (* add exact bound *) let add_eq acts t num ~expr ~(reason:reason) : unit = match Term.decide_state_exn t with | State s -> (* check compatibility with bounds *) begin match s.low, s.up with | B_some b, _ when (b.strict && Q.compare b.num num >= 0) || (not b.strict && Q.compare b.num num > 0) -> raise_conflict acts ~op:(if b.strict then Lt0 else Leq0) ~sign:true ~pivot:t ~expr_up_bound:expr ~expr_low_bound:b.expr ~reasons:[atomic_reason reason; atomic_reason b.reason] () | _, B_some b when (b.strict && Q.compare b.num num <= 0) || (not b.strict && Q.compare b.num num < 0) -> raise_conflict acts ~op:(if b.strict then Lt0 else Leq0) ~sign:true ~pivot:t ~expr_low_bound:expr ~expr_up_bound:b.expr ~reasons:[atomic_reason reason; atomic_reason b.reason] () | _ -> () end; (* check other equality constraints, and update *) let old_b = s.eq in Actions.on_backtrack acts (fun () -> s.eq <- old_b); let reason = atomic_reason reason in begin match s.eq with | EC_none -> s.eq <- EC_eq {num;reason;expr} | EC_neq {l;_} -> (* check if compatible *) List.iter (fun (n2, expr2, reason_neq) -> if Q.equal num n2 then ( (* conflict *) assert (Atom.is_true reason_neq); raise_conflict acts ~pivot:t ~op:Eq0 ~sign:false ~expr_up_bound:expr ~expr_low_bound:expr2 ~reasons:[reason_neq; reason] () )) l; (* erase *) s.eq <- EC_eq {num;reason;expr} | EC_eq eq -> if Q.equal eq.num num then ( () (* do nothing *) ) else ( (* conflict *) raise_conflict acts ~sign:true ~pivot:t ~expr_up_bound:expr ~expr_low_bound:eq.expr ~op:Eq0 ~reasons:[reason; eq.reason] () ) end | _ -> assert false (* add forbidden value *) let add_neq acts t num ~expr ~(reason:atom) : unit = match Term.decide_state_exn t with | State s -> let old_b = s.eq in Actions.on_backtrack acts (fun () -> s.eq <- old_b); begin match s.eq with | EC_none -> s.eq <- EC_neq {l=[num,expr,reason]}; check_tight_bound acts t; | EC_neq neq -> (* just add constraint, if not redundant *) if not (List.exists (fun (n,_,_) -> Q.equal n num) neq.l) then ( s.eq <- EC_neq {l=(num,expr,reason) :: neq.l}; check_tight_bound acts t; ) | EC_eq eq -> (* check if compatible *) if Q.equal eq.num num then ( (* conflict *) raise_conflict acts ~pivot:t ~sign:false ~op:Eq0 ~expr_up_bound:expr ~expr_low_bound:eq.expr ~reasons:[eq.reason;reason] () ) end | _ -> assert false (* add a unit constraint to [t]. The constraint is [reason], which is valued to [b] *) let add_unit_constr acts op expr (t:term) ~(reason:atom) (b:bool) : unit = assert (t != Atom.term reason); let constr, expr, num = constr_of_unit op expr t b in (* look into existing constraints *) Log.debugf 10 (fun k->k"(@[<hv>lra.add_unit_constr@ :term %a@ :constr @[%a %a@] \ @ :reason %a@ :expr %a@ :cur-state %a@])" Term.debug t pp_constr constr Q.pp_print num Atom.debug reason LE.pp expr pp_state (Term.decide_state_exn t)); (* update, depending on the kind of constraint [reason] is *) let reason = Atom reason in begin match constr with | C_leq -> add_up acts ~strict:false t num ~expr ~reason | C_lt -> add_up acts ~strict:true t num ~expr ~reason | C_geq -> add_low acts ~strict:false t num ~expr ~reason | C_gt -> add_low acts ~strict:true t num ~expr ~reason | C_eq -> add_eq acts t num ~expr ~reason | C_neq -> add_neq acts t num ~expr ~reason:(atomic_reason reason) end (* [t] should evaluate or propagate. Add constraint to its state or propagate *) let check_consistent _acts (t:term) : unit = match Term.view t with | Const _ -> () | Pred _ -> (* check consistency *) begin match eval t, Term.value t with | Eval_into (V_true,_), Some V_true | Eval_into (V_false,_), Some V_false -> () | Eval_into (V_false,subs), Some V_true | Eval_into (V_true,subs), Some V_false -> Error.errorf "inconsistency in lra: %a@ :subs (@[%a@])" Term.debug t (Util.pp_list Term.debug) subs | Eval_unknown, _ -> Error.errorf "inconsistency in lra: %a@ does-not-eval" Term.debug t | Eval_into _, _ -> assert false (* non boolean! *) end | _ -> assert false (* [u] is [t] or one of its subterms. All the other watches are up-to-date, so we can add a constraint or even propagate [t] *) let check_or_propagate acts (t:term) ~(u:term) : unit = match Term.view t with | Const _ -> () | Pred p -> begin match Term.value t with | None -> (* term not assigned, means all subterms are. We can evaluate *) assert (t == u); assert (LE.terms p.expr |> Iter.for_all Term.has_some_value); begin match eval_le p.expr with | None -> assert false | Some (n,subs) -> let v = eval_bool_const p.op n in Actions.propagate_bool_eval acts t v ~subs end | Some V_true -> assert (t != u); add_unit_constr acts p.op p.expr u ~reason:(Term.Bool.pa t) true | Some V_false -> assert (t != u); add_unit_constr acts p.op p.expr u ~reason:(Term.Bool.na t) false | Some _ -> assert false end | _ -> assert false (* initialization of a term *) let init acts t : unit = match Term.view t with | Const _ -> () | Pred p -> let watches = Term.Watch2.make (t :: LE.terms_l p.expr) in p.watches <- watches; Term.Watch2.init p.watches t ~on_unit:(fun u -> check_or_propagate acts t ~u) ~on_all_set:(fun () -> check_consistent acts t) | _ -> assert false let update_watches acts t ~watch : watch_res = match Term.view t with | Pred p -> Term.Watch2.update p.watches t ~watch ~on_unit:(fun u -> check_or_propagate acts t ~u) ~on_all_set:(fun () -> check_consistent acts t) | Const _ -> assert false | _ -> assert false let mk_eq t u = mk_pred Eq0 (LE.singleton1 t -.. LE.singleton1 u) (* can [t] be equal to [v] consistently with unit constraints? *) let can_be_eq (t:term) (n:num) : bool = match Term.decide_state_exn t with | State r -> begin match r.eq with | EC_none -> true | EC_eq {num;_} -> Q.equal num n | EC_neq {l} -> List.for_all (fun (num,_,_) -> not (Q.equal num n)) l end && begin match r.low with | B_none -> true | B_some {num;strict;_} -> (strict && Q.compare num n < 0) || (not strict && Q.compare num n <= 0) end && begin match r.up with | B_none -> true | B_some {num;strict;_} -> (strict && Q.compare num n > 0) || (not strict && Q.compare num n >= 0) end | _ -> assert false (* find a feasible value for [t] *) let find_val (t:term) : num = let sufficiently_large ~n forbid = List.fold_left Q.max n forbid |> Q.add Q.one and sufficiently_small ~n forbid = List.fold_left Q.min n forbid |> Q.add Q.minus_one in (* find an element of [)a,b(] that doesn't belong in [forbid] *) let rec find_between a b forbid = (* (a+b)/2 *) let mid = Q.div_2exp (Q.add a b) 1 in if CCList.mem ~eq:Q.equal mid forbid then find_between a mid forbid else mid in begin match Term.decide_state_exn t with | State r -> begin match r.eq with | EC_eq {num;_} -> num | _ -> let forbid = match r.eq with | EC_eq _ -> assert false | EC_neq {l;_} -> List.map (fun (n,_,_) -> n) l | EC_none -> [] in begin match r.low, r.up with | B_none, B_none -> sufficiently_large ~n:Q.zero forbid | B_some {num;_}, B_none -> sufficiently_large ~n:num forbid | B_none, B_some {num;_} -> sufficiently_small ~n:num forbid | B_some low, B_some up when Q.equal low.num up.num -> (* tight bounds, [n ≤ t ≤ n] *) assert (not low.strict && not up.strict); assert (not (CCList.mem ~eq:Q.equal low.num forbid)); low.num | B_some low, B_some up -> assert (Q.compare low.num up.num < 0); find_between low.num up.num forbid end end | _ -> assert false end (* decision, according to current constraints *) let decide _ (t:term) : value = match Term.decide_state_exn t with | State r as st -> let n = if can_be_eq t r.last_val then r.last_val else find_val t in Log.debugf 30 (fun k->k"(@[<hv>lra.decide@ %a := %a@ :state %a@])" Term.debug t Q.pp_print n pp_state st); assert (can_be_eq t n); r.last_val <- n; (* save *) mk_val n | _ -> assert false let () = Term.TC.lazy_complete tc_t ~init ~update_watches ~subterms ~eval ~pp:pp_term; Type.TC.lazy_complete tc_ty ~pp:pp_ty ~decide ~eq:mk_eq ~mk_state; () let provided_services = [ Service.Any (k_rat, Lazy.force ty_rat); Service.Any (k_make_const, mk_const); Service.Any (k_make_pred, mk_pred); ] end in (module P) let plugin : Plugin.Factory.t = Plugin.Factory.make ~priority:12 ~name ~build ~requires:Plugin.(K_cons (Builtins.k_true, K_cons (Builtins.k_false,K_nil))) ()
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>