package mc2
A mcsat-based SMT solver in pure OCaml
Install
Dune Dependency
Authors
Maintainers
Sources
v0.1.tar.gz
md5=92de696251ec76fbf3eba6ee917fd80f
sha512=e88ba0cfc23186570a52172a0bd7c56053273941eaf3cda0b80fb6752e05d1b75986b01a4e4d46d9711124318e57cba1cd92d302e81d34f9f1ae8b49f39114f0
doc/src/mc2.core/Tseitin.ml.html
Source file Tseitin.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
(**************************************************************************) (* *) (* Alt-Ergo Zero *) (* *) (* Sylvain Conchon and_ Alain Mebsout *) (* Universite Paris-Sud 11 *) (* *) (* Copyright 2011. This file is distributed under the terms of the *) (* Apache Software License version 2.0 *) (* *) (**************************************************************************) module type Arg = Tseitin_intf.Arg module type S = Tseitin_intf.S module Make (F : Tseitin_intf.Arg) = struct type combinator = And | Or | Not type atom = F.t type id = int (* main formula type *) type t = { id: id; view: view; } and view = | True | Lit of atom | Comb of combinator * t list let[@inline] view t = t.view let rec pp out f = match f.view with | True -> Format.fprintf out "true" | Lit a -> F.pp out a | Comb (Not, [f]) -> Format.fprintf out "(@[<hv1>not %a@])" pp f | Comb (And, l) -> Format.fprintf out "(@[<hv>and %a@])" (Util.pp_list pp) l | Comb (Or, l) -> Format.fprintf out "(@[<hv>or %a@])" (Util.pp_list pp) l | _ -> assert false let mk_ = let n = ref 0 in fun view -> incr n; {view; id= !n} let[@inline] make comb l = mk_ (Comb (comb, l)) let[@inline] atom p = mk_ (Lit p) let true_ = mk_ True let false_ = mk_ @@ Comb(Not, [true_]) let flatten comb l = List.fold_left (fun acc f -> match f.view with | Comb (c,l) when c = comb -> List.rev_append l acc | _ -> f :: acc) [] l (* unordered filter *) let rev_filter f l = let rec aux acc = function | [] -> acc | a :: tl -> aux (if f a then a::acc else acc) tl in aux [] l let[@inline] is_true = function {view=True;_} -> true | _ -> false let[@inline] is_false = function {view=Comb(Not, [{view=True;_}]);_} -> true | _ -> false let remove_true l = rev_filter (fun x -> not (is_true x)) l let remove_false l = rev_filter (fun x -> not (is_false x)) l let and_ l = let l' = remove_true @@ flatten And l in if List.exists is_false l' then ( false_ ) else ( match l' with | [] -> true_ | [a] -> a | _ -> make And l' ) let or_ l = let l' = remove_false @@ flatten Or l in if List.exists is_true l' then ( true_ ) else ( match l' with | [] -> false_ | [a] -> a | _ -> make Or l' ) let rec not_ f = match f.view with | Comb (Not, [g]) -> g | Comb (Not, _) -> assert false | Lit a -> atom (F.neg a) | Comb (And, l) -> or_ @@ List.rev_map not_ l | Comb (Or, l) -> and_ @@ List.rev_map not_ l | _ -> make Not [f] let imply f1 f2 = or_ [not_ f1; f2] let equiv f1 f2 = and_ [imply f1 f2; imply f2 f1] let xor f1 f2 = or_ [ and_ [ not_ f1; f2 ]; and_ [ f1; not_ f2 ] ] let imply_l a b = or_ (b :: List.rev_map not_ a) let[@inline] equal a b = a.id = b.id let[@inline] hash a = CCHash.int a.id (* table of formulas *) module Tbl = CCHashtbl.Make(struct type nonrec t = t let equal = equal let hash = hash end) type cnf_res = | R_atom of atom | R_and of atom list | R_or of atom list | R_true | R_false type state = { fresh: unit -> atom; tbl_and: cnf_res Tbl.t; (* caching *) mutable acc_or : (atom * atom list) list; mutable acc_and : (atom * atom list) list; mutable proxies : atom list; } (* build a clause by flattening (if sub-formulas have the same combinator) and_ proxy-ing sub-formulas that have the opposite operator. *) let cnf_under_and (st:state) (f:t) : atom list option = let rec aux f : cnf_res = match f.view with | Lit a -> R_atom a | True -> R_true | Comb (Not, [{view=True;_}]) -> R_false | Comb (Not, [{view=Lit a;_}]) -> R_atom (F.neg a) | Comb ((And | Or), _) -> begin try Tbl.find st.tbl_and f with Not_found -> let res = aux_noncached f in Tbl.add st.tbl_and f res; res end | _ -> Log.debugf 1(fun k->k"(@[cnf.bad-formula@ %a@])" pp f); assert false and aux_noncached f : cnf_res = match f.view with | Comb (And, l) -> List.fold_left (fun acc f -> match acc, aux f with | R_false, _ | _, R_false -> R_false | R_and acc, R_true -> R_and acc | R_and acc, R_atom a -> R_and (a::acc) | R_and acc, R_and l -> R_and (List.rev_append l acc) | R_and acc, R_or l -> let proxy = st.fresh() in st.acc_or <- (proxy, l) :: st.acc_or; R_and (proxy :: acc) | _ -> assert false) (R_and []) l | Comb (Or, l) -> List.fold_left (fun acc f -> match acc, aux f with | R_true, _ | _, R_true -> R_true | R_or acc, R_false -> R_or acc | R_or acc, R_atom a -> R_or (a::acc) | R_or acc, R_or l -> R_or (List.rev_append l acc) | R_or acc, R_and l -> let proxy = st.fresh() in st.acc_and <- (proxy, l) :: st.acc_and; R_or (proxy :: acc) | _ -> assert false) (R_or []) l | _ -> assert false in match aux f with | R_atom a -> Some [a] | R_or l -> Some l | R_false -> Some [] (* empty clause *) | R_true -> None (* trivial clause *) | _ -> assert false let cnf ?simplify:_ ~fresh (f:t) : atom list list = let st = { fresh; tbl_and = Tbl.create 16; acc_or=[]; acc_and=[]; proxies=[]; } in let acc = match f.view with | True -> [] | Comb (Not, [{view=True;_}]) -> [[]] | Comb (And, l) -> CCList.filter_map (cnf_under_and st) l | _ -> CCOpt.to_list @@ cnf_under_and st f in (* encode clauses that make proxies in !acc_and equivalent to their clause *) let acc = List.fold_left (fun acc (p,l) -> st.proxies <- p :: st.proxies; let np = F.neg p in (* build clause [cl = l1 & l2 & ... & ln => p] where [l = [l1;l2;..]] also add clauses [p => l1], [p => l2], etc. *) let cl, acc = List.fold_left (fun (cl,acc) a -> (F.neg a :: cl), [np; a] :: acc) ([p],acc) l in cl :: acc) acc st.acc_and in (* encore clauses that make proxies in !acc_or equivalent to their clause *) let acc = List.fold_left (fun acc (p,l) -> st.proxies <- p :: st.proxies; (* add clause [p => l1 | l2 | ... | ln], and_ add clauses [l1 => p], [l2 => p], etc. *) let acc = List.fold_left (fun acc a -> [p; F.neg a]::acc) acc l in (F.neg p :: l) :: acc) acc st.acc_or in acc end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>