package lsp
Install
Dune Dependency
Authors
-
AAndrey Popp <8mayday@gmail.com>
-
RRusty Key <iam@stfoo.ru>
-
LLouis Roché <louis@louisroche.net>
-
OOleksiy Golovko <alexei.golovko@gmail.com>
-
RRudi Grinberg <me@rgrinberg.com>
-
SSacha Ayoun <sachaayoun@gmail.com>
-
Ccannorin <cannorin@gmail.com>
-
UUlugbek Abdullaev <ulugbekna@gmail.com>
-
Thibaut Mattio
-
MMax Lantas <mnxndev@outlook.com>
Maintainers
Sources
sha256=58ef5aa7bf176712428b4e0b1015feaf6d677cbd9474f8822d132b25223b14e9
sha512=a368e3bc25eb6608110bd84b87142b6829a32182b61c336ad5faad597932e3c3db806a8043f52b234f2a05cc6ee88230267121fda81fff35c552cbb47ba895ab
doc/lsp.stdune/Stdune/Monoid/index.html
Module Stdune.Monoid
Source
This functor extends the basic definition of a monoid by adding a convenient operator synonym ( @ ) = combine
, as well as derived functions reduce
and map_reduce
.
The monoid you get with empty = false
and combine = ( || )
.
The monoid you get with empty = true
and combine = ( && )
.
The string concatenation monoid with empty = ""
and combine = ( ^ )
.
The list monoid with empty = []
and combine = ( @ )
.
The list monoid with empty = []
and combine = ( @ )
.
The trivial monoid with empty = ()
and combine () () = ()
.
The addition monoid with empty = zero
and combine = ( + )
.
The multiplication monoid with empty = one
and combine = ( * )
.
The union monoid with empty = M.empty
and combine = M.union
.
The product of monoids where pairs are combined component-wise.
module Product3
(A : sig ... end)
(B : sig ... end)
(C : sig ... end) :
S with type t = A.t * B.t * C.t
Same as Product
but for 3 monoids.
Functions that return a monoid form the following monoid:
Endofunctions, i.e., functions of type t -> t
, form two monoids.