package lsp

  1. Overview
  2. Docs
LSP protocol implementation in OCaml

Install

Dune Dependency

Authors

Maintainers

Sources

jsonrpc-1.7.0.tbz
sha256=ca43b6608366ddf891d7c1e1cc38de2c7f93a6da0511de164959db1f88fc42ed
sha512=43a00604f25bd1d3e93bfd43f1ef9c4cad9aa392c15a5db0c5ba0264f396e7ca6f60a0293467609402e87aeec441a05e7ee2990b37c98dc27b92a22afbebfd02

doc/lsp.stdune/Stdune/Monoid/index.html

Module Stdune.MonoidSource

Sourcemodule type Basic = sig ... end
Sourcemodule Make (M : Basic) : sig ... end

This functor extends the basic definition of a monoid by adding a convenient operator synonym ( @ ) = combine, as well as derived functions reduce and map_reduce.

Sourcemodule Exists : sig ... end

The monoid you get with empty = false and combine = ( || ).

Sourcemodule Forall : sig ... end

The monoid you get with empty = true and combine = ( && ).

Sourcemodule String : sig ... end

The string concatenation monoid with empty = "" and combine = ( ^ ).

Sourcemodule List (M : sig ... end) : sig ... end

The list monoid with empty = [] and combine = ( @ ).

Sourcemodule Appendable_list (M : sig ... end) : sig ... end

The list monoid with empty = [] and combine = ( @ ).

Sourcemodule Unit : sig ... end

The trivial monoid with empty = () and combine () () = ().

Sourcemodule Add (M : sig ... end) : sig ... end

The addition monoid with empty = zero and combine = ( + ).

Sourcemodule Mul (M : sig ... end) : sig ... end

The multiplication monoid with empty = one and combine = ( * ).

Sourcemodule Union (M : sig ... end) : sig ... end

The union monoid with empty = M.empty and combine = M.union.

Sourcemodule Product (A : sig ... end) (B : sig ... end) : sig ... end

The product of monoids where pairs are combined component-wise.

Sourcemodule Product3 (A : sig ... end) (B : sig ... end) (C : sig ... end) : sig ... end

Same as Product but for 3 monoids.

Sourcemodule Function (A : sig ... end) (M : sig ... end) : sig ... end

Functions that return a monoid form the following monoid:

Sourcemodule Endofunction : sig ... end

Endofunctions, i.e., functions of type t -> t, form two monoids.

OCaml

Innovation. Community. Security.