package lsp

  1. Overview
  2. Docs
LSP protocol implementation in OCaml

Install

Dune Dependency

Authors

Maintainers

Sources

jsonrpc-1.6.1.tbz
sha256=bccc0d7194714a4c40c362766ad9095d3c58505a1d4f1dc4becd9b3d1bda8209
sha512=199bee8c74aec6822bc83bf9a7c3757206bdaa55a19cd1f5cf480127618a078baa1e917f6a90a6135a5277e4eb87977e685c10e6503f546997e6b985949e190f

doc/lsp.stdune/Stdune/Monoid/index.html

Module Stdune.MonoidSource

Sourcemodule type Basic = sig ... end
Sourcemodule Make (M : Basic) : sig ... end

This functor extends the basic definition of a monoid by adding a convenient operator synonym ( @ ) = combine, as well as derived functions reduce and map_reduce.

Sourcemodule Exists : sig ... end

The monoid you get with empty = false and combine = ( || ).

Sourcemodule Forall : sig ... end

The monoid you get with empty = true and combine = ( && ).

Sourcemodule String : sig ... end

The string concatenation monoid with empty = "" and combine = ( ^ ).

Sourcemodule List (M : sig ... end) : sig ... end

The list monoid with empty = [] and combine = ( @ ).

Sourcemodule Appendable_list (M : sig ... end) : sig ... end

The list monoid with empty = [] and combine = ( @ ).

Sourcemodule Unit : sig ... end

The trivial monoid with empty = () and combine () () = ().

Sourcemodule Add (M : sig ... end) : sig ... end

The addition monoid with empty = zero and combine = ( + ).

Sourcemodule Mul (M : sig ... end) : sig ... end

The multiplication monoid with empty = one and combine = ( * ).

Sourcemodule Union (M : sig ... end) : sig ... end

The union monoid with empty = M.empty and combine = M.union.

Sourcemodule Product (A : sig ... end) (B : sig ... end) : sig ... end

The product of monoids where pairs are combined component-wise.

Sourcemodule Product3 (A : sig ... end) (B : sig ... end) (C : sig ... end) : sig ... end

Same as Product but for 3 monoids.

Sourcemodule Function (A : sig ... end) (M : sig ... end) : sig ... end

Functions that return a monoid form the following monoid:

Sourcemodule Endofunction (A : sig ... end) : sig ... end

Endofunctions, i.e., functions of type t -> t form the following monoid:

OCaml

Innovation. Community. Security.