package lsp
LSP protocol implementation in OCaml
Install
Dune Dependency
Authors
Maintainers
Sources
jsonrpc-1.6.0.tbz
sha256=35e8c7341f8eb1fa39fb0f0e0701a7ed90b9a0bb89ccf84b7ed997cd258cbec3
sha512=c96a7a3ca845ec193e9edc4a74804a22d6e37efc852b54575011879bd2105e0df021408632219f542ca3ad85b36b5c8b72f2b417204d154d5f0dd0839535afa5
doc/src/lsp.fiber_unix/scheduler.ml.html
Source file scheduler.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
open Import module Worker : sig (** Simple queue that is consumed by its own thread *) type 'work t val create : do_:('a -> unit) -> 'a t type task val cancel : task -> unit val add_work : 'a t -> 'a -> (task, [ `Stopped ]) result val stop : _ t -> unit end = struct type state = | Running of Thread.t | Stopped of Thread.t | Finished type 'a t = { work : 'a Removable_queue.t ; mutable state : state ; mutex : Mutex.t ; work_available : Condition.t } and task = Task : 'a t * 'a Removable_queue.node -> task let cancel (Task (t, node)) = with_mutex t.mutex ~f:(fun () -> Removable_queue.remove node) let is_running t = match t.state with | Running _ -> true | Stopped _ | Finished -> false let run (f, t) = let rec loop () = match t.state with | Stopped _ -> ( match Removable_queue.pop t.work with | None -> t.state <- Finished | Some job -> do_work job) | Finished -> () | Running _ -> ( match Removable_queue.pop t.work with | Some job -> do_work job | None -> while Removable_queue.is_empty t.work && is_running t do Condition.wait t.work_available t.mutex done; loop ()) and do_work job = Mutex.unlock t.mutex; f job; Mutex.lock t.mutex; loop () in with_mutex t.mutex ~f:loop let create ~do_ = let t = { work = Removable_queue.create () ; state = Finished ; mutex = Mutex.create () ; work_available = Condition.create () } in t.state <- Running (Thread.create run (do_, t)); t let add_work (type a) (t : a t) (w : a) = with_mutex t.mutex ~f:(fun () -> if is_running t then ( let node = Removable_queue.push t.work w in Condition.signal t.work_available; Ok (Task (t, node)) ) else Error `Stopped) let stop (t : _ t) = with_mutex t.mutex ~f:(fun () -> match t.state with | Running th -> t.state <- Stopped th; Condition.signal t.work_available | Stopped _ | Finished -> ()) end module Timer_id = Id.Make () type process = { pid : Pid.t ; ivar : Unix.process_status Fiber.Ivar.t } type process_state = | Running of process | Zombie of Unix.process_status type t = { mutable events_pending : int ; events : event Queue.t ; events_mutex : Mutex.t ; time_mutex : Mutex.t ; event_ready : Condition.t ; timers_available : Condition.t ; timers_available_mutex : Mutex.t ; earliest_next_mutex : Mutex.t ; earliest_next_barrier : Barrier.t ; mutable earliest_next : float option ; mutable threads : thread list ; mutable time : Thread.t ; mutable waker : Thread.t ; (* TODO Replace with Removable_queue *) timers : (Timer_id.t, active_timer ref) Table.t ; process_watcher : process_watcher Lazy.t } and event = | Job_completed : 'a * 'a Fiber.Ivar.t -> event | Scheduled of active_timer | Abort and job = | Pending : (unit -> 'a) * ('a, [ `Exn of Exn_with_backtrace.t | `Canceled ]) result Fiber.Ivar.t -> job and thread = { scheduler : t ; worker : job Worker.t } and timer = { mutable delay : float ; timer_scheduler : t ; timer_id : Timer_id.t } and active_timer = { scheduled : float ; ivar : [ `Resolved | `Cancelled ] Fiber.Ivar.t ; parent : timer } and process_watcher = { mutex : Mutex.t ; something_is_running : Condition.t ; table : (Pid.t, process_state) Table.t ; process_scheduler : t ; mutable running_count : int } let add_events t = function | [] -> () | events -> with_mutex t.events_mutex ~f:(fun () -> List.iter events ~f:(Queue.push t.events); Condition.signal t.event_ready) let is_empty table = Table.length table = 0 let me = Fiber.Var.create () let scheduler () = Fiber.Var.get_exn me let signal_timers_available t = with_mutex t.timers_available_mutex ~f:(fun () -> Condition.signal t.timers_available) let time_loop t = let rec loop () = let to_run = ref [] in let earliest_next = ref None in with_mutex t.time_mutex ~f:(fun () -> if not (is_empty t.timers) then let now = Unix.gettimeofday () in Table.filteri_inplace t.timers ~f:(fun ~key:_ ~data:active_timer -> let active_timer = !active_timer in let scheduled_at = active_timer.scheduled +. active_timer.parent.delay in let need_to_run = scheduled_at < now in if need_to_run then to_run := active_timer :: !to_run else earliest_next := Some (match !earliest_next with | None -> scheduled_at | Some v -> min scheduled_at v); not need_to_run)); let to_run = List.sort !to_run ~compare:(fun x y -> Timer_id.compare x.parent.timer_id y.parent.timer_id) |> List.map ~f:(fun x -> Scheduled x) in add_events t to_run; Option.iter !earliest_next ~f:(fun s -> with_mutex t.earliest_next_mutex ~f:(fun () -> t.earliest_next <- Some s); match Barrier.signal t.earliest_next_barrier with | Ok () -> () | Error `Closed -> assert false); with_mutex t.timers_available_mutex ~f:(fun () -> Condition.wait t.timers_available t.timers_available_mutex); loop () in loop () let wake_loop t = let rec loop timeout = match Barrier.await t.earliest_next_barrier ?timeout with | Error (`Closed (`Read b)) -> if b then signal_timers_available t | Error `Timeout -> signal_timers_available t; loop None | Ok () -> ( let wakeup_at = with_mutex t.earliest_next_mutex ~f:(fun () -> let v = t.earliest_next in t.earliest_next <- None; v) in let now = Unix.gettimeofday () in match wakeup_at with | None -> loop None | Some wakeup_at -> if now < wakeup_at then loop (Some (wakeup_at -. now)) else ( signal_timers_available t; loop None )) in loop None let create_thread scheduler = let worker = let do_ (Pending (f, ivar)) = let res = match Exn_with_backtrace.try_with f with | Ok x -> Ok x | Error exn -> Error (`Exn exn) in add_events scheduler [ Job_completed (res, ivar) ] in Worker.create ~do_ in let t = { scheduler; worker } in scheduler.threads <- t :: scheduler.threads; t let add_pending_events t by = with_mutex t.events_mutex ~f:(fun () -> t.events_pending <- t.events_pending + by; assert (t.events_pending >= 0)) type 'a task = { ivar : ('a, [ `Exn of Exn_with_backtrace.t | `Canceled ]) result Fiber.Ivar.t ; task : Worker.task } let await task = Fiber.Ivar.read task.ivar let await_no_cancel task = let open Fiber.O in let+ res = Fiber.Ivar.read task.ivar in match res with | Ok x -> Ok x | Error `Canceled -> assert false | Error (`Exn exn) -> Error exn let cancel_task task = let open Fiber.O in let* status = Fiber.Ivar.peek task.ivar in match status with | Some _ -> Fiber.return () | None -> Worker.cancel task.task; Fiber.Ivar.fill task.ivar (Error `Canceled) let async (t : thread) f = add_pending_events t.scheduler 1; let ivar = Fiber.Ivar.create () in let work = Worker.add_work t.worker (Pending (f, ivar)) in Result.map work ~f:(fun task -> { ivar; task }) let async_exn t f = match async t f with | Error `Stopped -> Code_error.raise "async_exn: stopped thread" [] | Ok task -> task let stop (t : thread) = Worker.stop t.worker let cancel_timers t = let timers = ref [] in with_mutex t.time_mutex ~f:(fun () -> Table.filteri_inplace t.timers ~f:(fun ~key:_ ~data:timer -> timers := !timer.ivar :: !timers; false)); Fiber.parallel_iter !timers ~f:(fun ivar -> Fiber.Ivar.fill ivar `Cancelled) type run_error = | Never | Abort_requested | Exn of Exn_with_backtrace.t exception Abort of run_error let () = Printexc.register_printer (function | Abort Never -> Some "Abort: Never" | Abort Abort_requested -> Some "Abort: requested" | Abort (Exn exn) -> Some ("Abort: " ^ Format.asprintf "%a@." Exn_with_backtrace.pp_uncaught exn) | _ -> None) let event_next (t : t) : Fiber.fill = with_mutex t.events_mutex ~f:(fun () -> while Queue.is_empty t.events do Condition.wait t.event_ready t.events_mutex done; let consume_event () = let res = Queue.pop_exn t.events in t.events_pending <- t.events_pending - 1; assert (t.events_pending >= 0); res in if Queue.is_empty t.events then Error (Abort Never) else match consume_event () with | Abort -> Error (Abort Abort_requested) | Job_completed (a, ivar) -> Ok (Fiber.Fill (ivar, a)) | Scheduled active_timer -> Ok (Fill (active_timer.ivar, `Resolved))) |> Result.ok_exn let report t = let status m = if Mutex.try_lock m then "was unlocked" else "locked" in [ ("time_mutex", t.time_mutex) ; ("timers_available_mutex", t.timers_available_mutex) ; ("events_mutex", t.events_mutex) ] |> List.iter ~f:(fun (name, mutex) -> Format.eprintf "%s: %s@." name (status mutex)); Format.eprintf "pending events: %d@." t.events_pending; Format.eprintf "events: %d@." (Queue.length t.events); Format.eprintf "threads: %d@." (List.length t.threads); Format.eprintf "timers: %d@." (Table.length t.timers) let iter (t : t) = if t.events_pending = 0 then ( let () = assert (Queue.is_empty t.events) in report t; raise (Abort Never) ) else event_next t let create_timer t ~delay = { timer_scheduler = t; delay; timer_id = Timer_id.gen () } let set_delay t ~delay = t.delay <- delay let schedule (type a) (timer : timer) (f : unit -> a Fiber.t) : (a, [ `Cancelled ]) result Fiber.t = let open Fiber.O in let active_timer = let scheduled = Unix.gettimeofday () in { scheduled; ivar = Fiber.Ivar.create (); parent = timer } in let* () = match with_mutex timer.timer_scheduler.time_mutex ~f:(fun () -> match Table.find timer.timer_scheduler.timers timer.timer_id with | Some active -> let to_cancel = !active.ivar in active := active_timer; `Cancel to_cancel | None -> Table.add_exn timer.timer_scheduler.timers timer.timer_id (ref active_timer); `Signal_timers_available) with | `Cancel ivar -> Fiber.Ivar.fill ivar `Cancelled | `Signal_timers_available -> add_pending_events timer.timer_scheduler 1; signal_timers_available timer.timer_scheduler; Fiber.return () in let* res = Fiber.Ivar.read active_timer.ivar in match res with | `Cancelled as e -> Fiber.return (Error e) | `Resolved -> let+ res = f () in Ok res let cancel_timer (timer : timer) = let t = timer.timer_scheduler in match with_mutex t.time_mutex ~f:(fun () -> match Table.find t.timers timer.timer_id with | None -> None | Some at -> Table.remove t.timers timer.timer_id; Some !at.ivar) with | None -> Fiber.return () | Some ivar -> with_mutex t.events_mutex ~f:(fun () -> t.events_pending <- t.events_pending - 1); Fiber.Ivar.fill ivar `Cancelled let abort t = (* TODO proper cleanup *) add_events t [ Abort ] module Process_watcher : sig val init : t -> process_watcher (** Register a new running process. *) val register : process_watcher -> process -> unit (** Send the following signal to all running processes. *) val killall : process_watcher -> int -> unit end = struct module Process_table : sig val add : process_watcher -> process -> unit val remove : process_watcher -> pid:Pid.t -> Unix.process_status -> unit val running_count : process_watcher -> int val iter : process_watcher -> f:(process -> unit) -> unit end = struct let add t job = match Table.find t.table job.pid with | None -> Table.set t.table job.pid (Running job); t.running_count <- t.running_count + 1; if t.running_count = 1 then Condition.signal t.something_is_running | Some (Zombie status) -> Table.remove t.table job.pid; add_events t.process_scheduler [ Job_completed (status, job.ivar) ] | Some (Running _) -> assert false let remove t ~pid status = match Table.find t.table pid with | None -> Table.set t.table pid (Zombie status) | Some (Running job) -> t.running_count <- t.running_count - 1; Table.remove t.table pid; add_events t.process_scheduler [ Job_completed (status, job.ivar) ] | Some (Zombie _) -> assert false let iter t ~f = Table.iter t.table ~f:(fun data -> match data with | Running job -> f job | Zombie _ -> ()) let running_count t = t.running_count end let register t process = add_pending_events t.process_scheduler 1; Mutex.lock t.mutex; Process_table.add t process; Mutex.unlock t.mutex let killall t signal = Mutex.lock t.mutex; Process_table.iter t ~f:(fun job -> try Unix.kill (Pid.to_int job.pid) signal with | Unix.Unix_error _ -> ()); Mutex.unlock t.mutex exception Finished of process * Unix.process_status let wait_nonblocking_win32 t = try Process_table.iter t ~f:(fun job -> let pid, status = Unix.waitpid [ WNOHANG ] (Pid.to_int job.pid) in if pid <> 0 then raise_notrace (Finished (job, status))); false with | Finished (job, status) -> (* We need to do the [Unix.waitpid] and remove the process while holding the lock, otherwise the pid might be reused in between. *) Process_table.remove t ~pid:job.pid status; true let wait_win32 t = while not (wait_nonblocking_win32 t) do Mutex.unlock t.mutex; Thread.delay 0.001; Mutex.lock t.mutex done let wait_unix t = Mutex.unlock t.mutex; let pid, status = Unix.wait () in Mutex.lock t.mutex; let pid = Pid.of_int pid in Process_table.remove t ~pid status let wait = if Sys.win32 then wait_win32 else wait_unix let run t = Mutex.lock t.mutex; while true do while Process_table.running_count t = 0 do Condition.wait t.something_is_running t.mutex done; wait t done let init process_scheduler = let t = { mutex = Mutex.create () ; something_is_running = Condition.create () ; table = Table.create (module Pid) 128 ; running_count = 0 ; process_scheduler } in ignore (Thread.create run t : Thread.t); t end let cleanup t = Barrier.close t.earliest_next_barrier; List.iter t.threads ~f:stop; if Lazy.is_val t.process_watcher then Process_watcher.killall (Lazy.force t.process_watcher) Sys.sigkill let wait_for_process t pid = let ivar = Fiber.Ivar.create () in Process_watcher.register (Lazy.force t.process_watcher) { pid; ivar }; Fiber.Ivar.read ivar let run_result : 'a. t -> 'a Fiber.t -> ('a, _) result = fun t f -> let f = Fiber.Var.set me t (fun () -> f) in let iter () = iter t in let res = match Fiber.run f ~iter with | exception Abort err -> Error err | exception exn -> let exn = Exn_with_backtrace.capture exn in Error (Exn exn) | res -> assert (t.events_pending = 0); Ok res in cleanup t; res let run t f = match run_result t f with | Ok s -> s | Error e -> raise (Abort e) let create () = let rec t = { events_pending = 0 ; events = Queue.create () ; events_mutex = Mutex.create () ; time_mutex = Mutex.create () ; event_ready = Condition.create () ; earliest_next_mutex = Mutex.create () ; earliest_next = None ; earliest_next_barrier = Barrier.create () ; threads = [] ; timers = Table.create (module Timer_id) 10 ; timers_available = Condition.create () ; timers_available_mutex = Mutex.create () ; time = Thread.self () ; waker = Thread.self () ; process_watcher } and process_watcher = lazy (Process_watcher.init t) in t.time <- Thread.create time_loop t; t.waker <- Thread.create wake_loop t; t
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>