package lsp

  1. Overview
  2. Docs
LSP protocol implementation in OCaml

Install

Dune Dependency

Authors

Maintainers

Sources

jsonrpc-1.6.0.tbz
sha256=35e8c7341f8eb1fa39fb0f0e0701a7ed90b9a0bb89ccf84b7ed997cd258cbec3
sha512=c96a7a3ca845ec193e9edc4a74804a22d6e37efc852b54575011879bd2105e0df021408632219f542ca3ad85b36b5c8b72f2b417204d154d5f0dd0839535afa5

doc/lsp.stdune/Stdune/Monoid/index.html

Module Stdune.MonoidSource

Sourcemodule type Basic = sig ... end
Sourcemodule Make (M : Basic) : sig ... end

This functor extends the basic definition of a monoid by adding a convenient operator synonym ( @ ) = combine, as well as derived functions reduce and map_reduce.

Sourcemodule Exists : sig ... end

The monoid you get with empty = false and combine = ( || ).

Sourcemodule Forall : sig ... end

The monoid you get with empty = true and combine = ( && ).

Sourcemodule String : sig ... end

The string concatenation monoid with empty = "" and combine = ( ^ ).

Sourcemodule List (M : sig ... end) : sig ... end

The list monoid with empty = [] and combine = ( @ ).

Sourcemodule Appendable_list (M : sig ... end) : sig ... end

The list monoid with empty = [] and combine = ( @ ).

Sourcemodule Unit : sig ... end

The trivial monoid with empty = () and combine () () = ().

Sourcemodule Add (M : sig ... end) : sig ... end

The addition monoid with empty = zero and combine = ( + ).

Sourcemodule Mul (M : sig ... end) : sig ... end

The multiplication monoid with empty = one and combine = ( * ).

Sourcemodule Union (M : sig ... end) : sig ... end

The union monoid with empty = M.empty and combine = M.union.

Sourcemodule Product (A : sig ... end) (B : sig ... end) : sig ... end

The product of monoids where pairs are combined component-wise.

Sourcemodule Product3 (A : sig ... end) (B : sig ... end) (C : sig ... end) : sig ... end

Same as Product but for 3 monoids.

Sourcemodule Function (A : sig ... end) (M : sig ... end) : sig ... end

Functions that return a monoid form the following monoid:

Sourcemodule Endofunction (A : sig ... end) : sig ... end

Endofunctions, i.e., functions of type t -> t form the following monoid:

OCaml

Innovation. Community. Security.