package lsp
LSP protocol implementation in OCaml
Install
Dune Dependency
Authors
Maintainers
Sources
jsonrpc-1.4.1.tbz
sha256=cee8371e7048e24c90e916c373ef6f3aba6f474d8a5fcf507ab6650fd8575eeb
sha512=150ebf71d3484d3beec1a145877cf30d84581bd072dd20159e878ed07cc4fc647b019b98bb0c9fede839b87f7bd13de4a64b534c0760a2ec57d0e4a4deac6f0f
doc/src/lsp.fiber/fiber.ml.html
Source file fiber.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
open! Stdune type 'a t = ('a -> unit) -> unit (* This module tries to enforce the following invariants: - the execution context passed to a continuation is the same as the current one - the execution of a fiber always ends with [deref] - when an exception is raised by the user code, the exception must be forwarded to the execution context that was active at the time the exception was raised - when an exception is raised by the user code, then we assume that the current fiber didn't reach the [deref] point. As a result we have to call [deref] at this point on the current execution context Remarks: - most of the code assumes that errors will be caught by the caller, so when we do a context switch, we simply change the current execution context and chain to the continuation without catching errors. The current [try..with] will catch any raised error and forward to the current execution context. The only place we add a [try..with] is at the toplevel or when forking. *) let of_thunk f k = f () k module Execution_context : sig module K : sig (* Represent a suspended fiber *) type 'a t (* Create a continuation that captures the current execution context *) val create : ('a -> unit) -> 'a t (* Restart a suspended fiber. [run] doesn't preserve the current execution context and should always be called last. *) val run : 'a t -> 'a -> unit end (* Execute the current continuation, making sure to forward errors to the current execution context. This function doesn't preserve the current execution context. It should be used to execute the current continuation before calling [K.run] *) val safe_run_k : ('a -> unit) -> 'a -> unit (* Execute a function returning a fiber, passing any raised exception to the current execution context. This function preserve the current execution context. It should be called when creating forks.*) val apply : ('a -> 'b t) -> 'a -> 'b t (* Add [n] references to the current execution context *) val add_refs : int -> unit (* Decrese the reference count of the current execution context *) val deref : unit -> unit (* [wait_errors f] executes [f ()] inside a new execution contexts. Returns a fiber that terminates when all the fiber in the sub-context have terminated. *) val wait_errors : (unit -> 'a t) -> ('a, unit) result t (* Set the current error handler. [on_error] is called in the current execution context. *) val set_error_handler : on_error:(Exn_with_backtrace.t -> unit) -> ('a -> 'b t) -> 'a -> 'b t val vars : unit -> Univ_map.t val set_vars : Univ_map.t -> ('a -> 'b t) -> 'a -> 'b t val set_vars_sync : Univ_map.t -> ('a -> 'b) -> 'a -> 'b (* Execute a callback with a fresh execution context. For the toplevel [Fiber.run] function. *) val new_run : (unit -> 'a) -> 'a end = struct type t = { on_error : Exn_with_backtrace.t k option (* This handler must never raise *) ; vars : Univ_map.t ; on_release : on_release } and 'a on_release_exec = { k : ('a, unit) result k ; mutable result : ('a, unit) result ; mutable ref_count : int } and on_release = | Do_nothing : on_release | Exec : _ on_release_exec -> on_release and 'a k = { run : 'a -> unit ; ctx : t } let current = ref { on_error = None; vars = Univ_map.empty; on_release = Do_nothing } let add_refs n = let t = !current in match t.on_release with | Do_nothing -> () | Exec r -> r.ref_count <- r.ref_count + n let rec deref t = match t.on_release with | Do_nothing -> () | Exec r -> let n = r.ref_count - 1 in assert (n >= 0); r.ref_count <- n; if n = 0 then ( current := r.k.ctx; (* We need to call [safe_run_k] as we might be the in handler of the [try...with] block inside [apply] and so we are no more in a [try...with] blocks *) safe_run_k r.k.run r.result ) and safe_run_k : type a. (a -> unit) -> a -> unit = fun k x -> try k x with exn -> forward_error exn and forward_error = let rec loop t exn = match t.on_error with | None -> Exn_with_backtrace.reraise exn | Some { ctx; run } -> ( current := ctx; try run exn with exn -> let exn = Exn_with_backtrace.capture exn in loop ctx exn ) in fun exn -> let exn = Exn_with_backtrace.capture exn in let t = !current in loop t exn; deref t let deref () = deref !current let wait_errors f k = let t = !current in let on_release = { k = { ctx = t; run = k }; ref_count = 1; result = Error () } in let child = { t with on_release = Exec on_release } in current := child; f () (fun x -> on_release.result <- Ok x; deref ()) let set_error_handler ~on_error f x k = let t = !current in let on_error = Some { run = on_error; ctx = t } in current := { t with on_error }; f x (fun x -> current := t; k x) let vars () = !current.vars let set_vars vars f x k = let t = !current in current := { t with vars }; f x (fun x -> current := t; k x) let set_vars_sync (type b) vars f x : b = let t = !current in current := { t with vars }; Exn.protect ~finally:(fun () -> current := t) ~f:(fun () -> f x) module K = struct type 'a t = 'a k let create run = { run; ctx = !current } let run { run; ctx } x = current := ctx; safe_run_k run x end let apply f x k = let backup = !current in (try f x k with exn -> forward_error exn); current := backup let new_run f = let backup = !current in Exn.protect ~finally:(fun () -> current := backup) ~f:(fun () -> current := { on_error = None; vars = Univ_map.empty; on_release = Do_nothing }; f ()) end module EC = Execution_context module K = EC.K let return x k = k x let never _ = () module O = struct let ( >>> ) a b k = a (fun () -> b k) let ( >>= ) t f k = t (fun x -> f x k) let ( >>| ) t f k = t (fun x -> k (f x)) let ( let+ ) = ( >>| ) let ( let* ) = ( >>= ) end open O let map t ~f = t >>| f let bind t ~f = t >>= f let both a b = let* x = a in let* y = b in return (x, y) let sequential_map l ~f = let rec loop l acc = match l with | [] -> return (List.rev acc) | x :: l -> let* x = f x in loop l (x :: acc) in loop l [] let sequential_iter l ~f = let rec loop l = match l with | [] -> return () | x :: l -> let* () = f x in loop l in loop l type ('a, 'b) fork_and_join_state = | Nothing_yet | Got_a of 'a | Got_b of 'b let fork_and_join fa fb k = let state = ref Nothing_yet in EC.add_refs 1; EC.apply fa () (fun a -> match !state with | Nothing_yet -> state := Got_a a; EC.deref () | Got_a _ -> assert false | Got_b b -> k (a, b)); fb () (fun b -> match !state with | Nothing_yet -> state := Got_b b; EC.deref () | Got_a a -> k (a, b) | Got_b _ -> assert false) let fork_and_join_unit fa fb k = let state = ref Nothing_yet in EC.add_refs 1; EC.apply fa () (fun () -> match !state with | Nothing_yet -> state := Got_a (); EC.deref () | Got_a _ -> assert false | Got_b b -> k b); fb () (fun b -> match !state with | Nothing_yet -> state := Got_b b; EC.deref () | Got_a () -> k b | Got_b _ -> assert false) module Sequence = struct type 'a fiber = 'a t type 'a t = 'a node fiber and 'a node = | Nil | Cons of 'a * 'a t let rec sequential_iter t ~f = t >>= function | Nil -> return () | Cons (x, t) -> let* () = f x in sequential_iter t ~f let parallel_iter t ~f k = let n = ref 1 in let k () = decr n; if !n = 0 then k () else EC.deref () in let rec loop t = t (function | Nil -> k () | Cons (x, t) -> EC.add_refs 1; incr n; EC.apply f x k; loop t) in loop t end let list_of_option_array = let rec loop arr i acc = if i = 0 then acc else let i = i - 1 in match arr.(i) with | None -> assert false | Some x -> loop arr i (x :: acc) in fun a -> loop a (Array.length a) [] let parallel_map l ~f k = match l with | [] -> k [] | [ x ] -> f x (fun x -> k [ x ]) | _ -> let n = List.length l in EC.add_refs (n - 1); let left_over = ref n in let results = Array.make n None in List.iteri l ~f:(fun i x -> EC.apply f x (fun y -> results.(i) <- Some y; decr left_over; if !left_over = 0 then k (list_of_option_array results) else EC.deref ())) let parallel_iter l ~f k = match l with | [] -> k () | [ x ] -> f x k | _ -> let n = List.length l in EC.add_refs (n - 1); let left_over = ref n in let k () = decr left_over; if !left_over = 0 then k () else EC.deref () in List.iter l ~f:(fun x -> EC.apply f x k) module Var = struct include Univ_map.Key let get var = Univ_map.find (EC.vars ()) var let get_exn var = Univ_map.find_exn (EC.vars ()) var let set_sync var x f = EC.set_vars_sync (Univ_map.set (EC.vars ()) var x) f () let set var x f k = EC.set_vars (Univ_map.set (EC.vars ()) var x) f () k let unset_sync var f = EC.set_vars_sync (Univ_map.remove (EC.vars ()) var) f () let unset var f k = EC.set_vars (Univ_map.remove (EC.vars ()) var) f () k let create () = create ~name:"var" (fun _ -> Dyn.Encoder.string "var") end let with_error_handler f ~on_error k = EC.set_error_handler ~on_error f () k let wait_errors f k = EC.wait_errors f k let fold_errors f ~init ~on_error = let acc = ref init in let on_error exn = acc := on_error exn !acc in wait_errors (fun () -> with_error_handler ~on_error f) >>| function | Ok _ as ok -> ok | Error () -> Error !acc let collect_errors f = let+ res = fold_errors f ~init:[] ~on_error:(fun e l -> e :: l) in match res with | Ok x -> Ok x | Error l -> Error (List.rev l) let finalize f ~finally = let* res1 = collect_errors f in let* res2 = collect_errors finally in let res = match (res1, res2) with | Ok x, Ok () -> Ok x | Error l, Ok _ | Ok _, Error l -> Error l | Error l1, Error l2 -> Error (l1 @ l2) in match res with | Ok x -> return x | Error l -> let* () = parallel_iter l ~f:(fun exn -> Exn_with_backtrace.reraise exn) in (* We might reach this point if all raised errors were handled by the user *) never module Ivar = struct type 'a state = | Full of 'a | Empty of 'a K.t Queue.t type 'a t = { mutable state : 'a state } let create () = { state = Empty (Queue.create ()) } let fill t x k = match t.state with | Full _ -> failwith "Fiber.Ivar.fill" | Empty q -> t.state <- Full x; EC.safe_run_k k (); Queue.iter q ~f:(fun k -> K.run k x) let read t k = match t.state with | Full x -> k x | Empty q -> Queue.push q (K.create k) let peek t k = k ( match t.state with | Full x -> Some x | Empty _ -> None ) end module Mvar = struct type 'a t = { writers : ('a * unit K.t) Queue.t ; readers : 'a K.t Queue.t ; mutable value : 'a option } (* Invariant enforced on mvars. We don't actually call this function, but we keep it here for documentation and to help understand the implementation: *) let _invariant t = match t.value with | None -> Queue.is_empty t.writers | Some _ -> Queue.is_empty t.readers let create () = { value = None; writers = Queue.create (); readers = Queue.create () } let create_full x = { value = Some x; writers = Queue.create (); readers = Queue.create () } let read t k = match t.value with | None -> Queue.push t.readers (K.create k) | Some v -> ( match Queue.pop t.writers with | None -> t.value <- None; k v | Some (v', w) -> t.value <- Some v'; EC.safe_run_k k v; K.run w () ) let write t x k = match t.value with | Some _ -> Queue.push t.writers (x, K.create k) | None -> ( match Queue.pop t.readers with | None -> t.value <- Some x; k () | Some r -> EC.safe_run_k k (); K.run r x ) end module Mutex = struct type t = { mutable locked : bool ; mutable waiters : unit K.t Queue.t } let lock t k = if t.locked then Queue.push t.waiters (K.create k) else ( t.locked <- true; k () ) let unlock t k = assert t.locked; match Queue.pop t.waiters with | None -> t.locked <- false; k () | Some next -> EC.safe_run_k k (); K.run next () let with_lock t f = let* () = lock t in finalize f ~finally:(fun () -> unlock t) let create () = { locked = false; waiters = Queue.create () } end module Throttle = struct type t = { mutable size : int ; mutable running : int ; waiting : unit Ivar.t Queue.t } let create size = { size; running = 0; waiting = Queue.create () } let size t = t.size let running t = t.running let rec restart t = if t.running >= t.size then return () else match Queue.pop t.waiting with | None -> return () | Some ivar -> t.running <- t.running + 1; let* () = Ivar.fill ivar () in restart t let resize t n = t.size <- n; restart t let run t ~f = finalize ~finally:(fun () -> t.running <- t.running - 1; restart t) (fun () -> if t.running < t.size then ( t.running <- t.running + 1; f () ) else let waiting = Ivar.create () in Queue.push t.waiting waiting; let* () = Ivar.read waiting in f ()) end type fill = Fill : 'a Ivar.t * 'a -> fill let run t ~iter = EC.new_run (fun () -> let result = ref None in EC.apply (fun () -> t) () (fun x -> result := Some x); let rec loop () = match !result with | Some res -> res | None -> let (Fill (ivar, v)) = iter () in Ivar.fill ivar v ignore; loop () in loop ()) let fork_and_race fa fb k = let state = ref Nothing_yet in EC.add_refs 1; EC.apply fa () (fun a -> match !state with | Nothing_yet -> EC.deref (); state := Got_a (); k (Left a) | Got_a () -> assert false | Got_b () -> ()); fb () (fun b -> match !state with | Nothing_yet -> EC.deref (); state := Got_b (); k (Right b) | Got_a () -> () | Got_b () -> assert false)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>