package lambdapi
Proof assistant for the λΠ-calculus modulo rewriting
Install
Dune Dependency
Authors
Maintainers
Sources
lambdapi-2.6.0.tbz
sha256=d01e5f13db2eaba6e4fe330667149e0059d4886c651ff9d6b672db2dfc9765ed
sha512=33b68c972aca37985ed73c527076198e7d4961c7e27c89cdabfe4d1cff97cd41ccfb85ae9499eb98ad9a0aefd920bc55555df6393fc441ac2429e4d99cddafa8
doc/src/lambdapi.export/coq.ml.html
Source file coq.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
(** Translate the parser-level AST to Coq. There are two modes: - raw_coq mode (option -o raw_coq): translation of the AST as it is (lambdapi-calculus is a subset system of coq if we ignore rules) - stt_coq mode (option -o stt_coq): translation of the AST as an encoding in simple type theory. The encoding can be specified through a lambdapi file (option --encoding). In both modes, a renaming map can be provided to rename some identifiers. The renaming map can be specified through a lambdapi file (option --renaming). *) open Lplib open Extra open Common open Pos open Error open Parsing open Syntax open Core let log = Logger.make 'x' "xprt" "export" let log = log.pp (** Symbols necessary to encode STT. *) type builtin = Set | Prop | Arr | El | Imp | All | Prf | Eq | Or | And | Ex | Not let index_of_builtin = function | Set -> 0 | Prop -> 1 | Arr -> 2 | El -> 3 | Imp -> 4 | All -> 5 | Prf -> 6 | Eq -> 7 | Or -> 8 | And -> 9 | Ex -> 10 | Not -> 11 let nb_builtins = 12 let builtin_of_index = function | 0 -> Set | 1 -> Prop | 2 -> Arr | 3 -> El | 4 -> Imp | 5 -> All | 6 -> Prf | 7 -> Eq | 8 -> Or | 9 -> And | 10 -> Ex | 11 -> Not | _ -> assert false let _ = (* sanity check *) for i = 0 to nb_builtins - 1 do assert (index_of_builtin (builtin_of_index i) = i) done let index_of_name = function | "Set" -> Some 0 | "prop" -> Some 1 | "arr" -> Some 2 | "El" -> Some 3 | "imp" -> Some 4 | "all" -> Some 5 | "Prf" -> Some 6 | "eq" -> Some 7 | "or" -> Some 8 | "and" -> Some 9 | "ex" -> Some 10 | "not" -> Some 11 | _ -> None let name_of_index = function | 0 -> "Set" | 1 -> "prop" | 2 -> "arr" | 3 -> "El" | 4 -> "imp"| 5 -> "all" | 6 -> "Prf" | 7 -> "eq" | 8 -> "or" | 9 -> "and" | 10 -> "ex" | 11 -> "not" | _ -> assert false let _ = (* sanity check *) for i = 0 to nb_builtins - 1 do assert (index_of_name (name_of_index i) = Some i) done let builtin : Term.qident array = let path = ["STTfa"] in Array.init nb_builtins (fun i -> path, name_of_index i) let sym b = builtin.(index_of_builtin b) (** Set renaming map from file. *) let rmap = ref StrMap.empty let set_renaming : string -> unit = fun f -> let consume = function | {elt=P_builtin(coq_id,{elt=([],lp_id);_});_} -> if Logger.log_enabled() then log "rename %s into %s" lp_id coq_id; rmap := StrMap.add lp_id coq_id !rmap | {pos;_} -> fatal pos "Invalid command." in Stream.iter consume (Parser.parse_file f) (** Set symbols whose declarations have to be erased. *) let erase = ref StrSet.empty module Qid = struct type t = Term.qident let compare = Stdlib.compare end module QidMap = Map.Make(Qid) let map_erased_qid_coq = ref QidMap.empty let set_mapping : string -> unit = fun f -> let consume = function | {elt=P_builtin(coq_id,lp_qid);_} -> if Logger.log_enabled() then log "rename %a into %s" Pretty.qident lp_qid coq_id; let id = snd lp_qid.elt in if Logger.log_enabled() then log "erase %s" id; erase := StrSet.add id !erase; map_erased_qid_coq := QidMap.add lp_qid.elt coq_id !map_erased_qid_coq; if fst lp_qid.elt = [] && id <> coq_id then rmap := StrMap.add id coq_id !rmap | {pos;_} -> fatal pos "Invalid command." in Stream.iter consume (Parser.parse_file f) (** Set encoding. *) let map_qid_builtin = ref QidMap.empty let set_encoding : string -> unit = fun f -> let found = Array.make nb_builtins false in let consume = function | {elt=P_builtin(n,lp_qid);pos} -> begin match index_of_name n with | Some i -> if Logger.log_enabled() then log "builtin \"%s\" = %a" n Pretty.qident lp_qid; builtin.(i) <- lp_qid.elt; found.(i) <- true; let b = builtin_of_index i in map_qid_builtin := QidMap.add lp_qid.elt b !map_qid_builtin; if b = El || b = Prf then (if Logger.log_enabled() then log "erase %s" (snd lp_qid.elt); erase := StrSet.add (snd lp_qid.elt) !erase) | None -> fatal pos "Unknown builtin." end | {pos;_} -> fatal pos "Invalid command." in Stream.iter consume (Parser.parse_file f); Array.iteri (fun i b -> if not b then let pos = Some {fname=Some f;start_line=0;start_col=0;end_line=0;end_col=0} in fatal pos "Builtin %s undefined." (name_of_index i)) found (** Basic printing functions. We use Printf for efficiency reasons. *) let out = Printf.printf let char = output_char let string = output_string let prefix pre elt oc x = string oc pre; elt oc x let suffix elt suf oc x = elt oc x; string oc suf let list elt sep oc xs = match xs with | [] -> () | x::xs -> elt oc x; List.iter (prefix sep elt oc) xs (** Translation of identifiers. *) let translate_ident : string -> string = fun s -> try StrMap.find s !rmap with Not_found -> s let raw_ident oc s = string oc (translate_ident s) let ident oc {elt;_} = raw_ident oc elt let param_id oc idopt = match idopt with | Some id -> ident oc id | None -> char oc '_' let param_ids = list param_id " " let raw_path = list string "." let path oc {elt;_} = raw_path oc elt let qident oc {elt=(mp,s);_} = match mp with | [] -> raw_ident oc s | _::_ -> raw_path oc mp; char oc '.'; raw_ident oc s (** Translation of terms. *) let stt = Stdlib.ref false let use_implicits = Stdlib.ref false let use_notations = Stdlib.ref false (* redefinition of p_get_args ignoring P_Wrap's. *) let p_get_args : p_term -> p_term * p_term list = fun t -> let rec p_get_args t acc = match t.elt with | P_Appl(t, u) -> p_get_args t (u::acc) | P_Wrap t -> p_get_args t acc | _ -> t, acc in p_get_args t [] let app t default cases = let h, ts = p_get_args t in if !stt then match h.elt with | P_Iden({elt;_},expl) -> begin match QidMap.find_opt elt !map_qid_builtin with | None -> default h ts | Some builtin -> cases h ts expl builtin end | _ -> default h ts else default h ts let rec term oc t = (*if Logger.log_enabled() then log "pp %a" (*Pos.short t.pos*) Pretty.term t;*) match t.elt with | P_Meta _ -> wrn t.pos "TODO"; assert false | P_Patt _ -> wrn t.pos "TODO"; assert false | P_Expl _ -> wrn t.pos "TODO"; assert false | P_Type -> string oc "Type" | P_Wild -> char oc '_' | P_NLit i -> if !stt then match QidMap.find_opt ([],i) !map_erased_qid_coq with | Some s -> string oc s | None -> raw_ident oc i else raw_ident oc i | P_Iden(qid,b) -> if b then char oc '@'; if !stt then match QidMap.find_opt qid.elt !map_erased_qid_coq with | Some s -> string oc s | None -> qident oc qid else qident oc qid | P_Arro(u,v) -> arrow oc u v | P_Abst(xs,u) -> abst oc xs u | P_Prod(xs,u) -> prod oc xs u | P_LLet(x,xs,a,u,v) -> string oc "let "; ident oc x; params_list oc xs; typopt oc a; string oc " := "; term oc u; string oc " in "; term oc v | P_Wrap u -> term oc u | P_Appl _ -> let default h ts = paren oc h; char oc ' '; list paren " " oc ts in app t default (fun h ts expl builtin -> match !use_notations, !use_implicits && not expl, builtin, ts with | _, _, (El|Prf), [u] -> term oc u | _, _, (Arr|Imp), [u;v] -> arrow oc u v | _, _, All, [_;{elt=P_Wrap({elt=P_Abst([_] as xs,u);_});_}] | _, true, All, [{elt=P_Wrap({elt=P_Abst([_] as xs,u);_});_}] -> prod oc xs u | _, _, Ex, [_;{elt=P_Wrap({elt=P_Abst([x],u);_});_}] | _, true, Ex, [{elt=P_Wrap({elt=P_Abst([x],u);_});_}] -> string oc "exists "; raw_params oc x; string oc ", "; term oc u | true, _, Eq, [_;u;v] | true, true, Eq, [u;v] -> paren oc u; string oc " = "; paren oc v | true, _, Or, [u;v] -> paren oc u; string oc " \\/ "; paren oc v | true, _, And, [u;v] -> paren oc u; string oc " /\\ "; paren oc v | true, _, Not, [u] -> string oc "~ "; paren oc u | _ -> default h ts) and arrow oc u v = paren oc u; string oc " -> "; term oc v and abst oc xs u = string oc "fun"; params_list_in_abs oc xs; string oc " => "; term oc u and prod oc xs u = string oc "forall"; params_list_in_abs oc xs; string oc ", "; term oc u and paren oc t = let default() = char oc '('; term oc t; char oc ')' in match t.elt with | P_Arro _ | P_Abst _ | P_Prod _ | P_LLet _ | P_Wrap _ -> default() | P_Appl _ -> app t (fun _ _ -> default()) (fun _ ts _ builtin -> match builtin, ts with | (El|Prf), [u] -> paren oc u | _ -> default()) | _ -> term oc t and raw_params oc (ids,t,_) = param_ids oc ids; typopt oc t and params oc ((ids,t,b) as x) = match b, t with | true, _ -> char oc '{'; raw_params oc x; char oc '}' | false, Some _ -> char oc '('; raw_params oc x; char oc ')' | false, None -> param_ids oc ids (* starts with a space if the list is not empty *) and params_list oc = List.iter (prefix " " params oc) (* starts with a space if the list is not empty *) and params_list_in_abs oc l = match l with | [ids,t,false] -> char oc ' '; param_ids oc ids; typopt oc t | _ -> params_list oc l (* starts with a space if <> None *) and typopt oc t = Option.iter (prefix " : " term oc) t (** Translation of commands. *) let is_lem x = is_opaq x || is_priv x let command oc {elt; pos} = begin match elt with | P_open ps -> string oc "Import "; list path " " oc ps; string oc ".\n" | P_require (true, ps) -> string oc "Require Import "; list path " " oc ps; string oc ".\n" | P_require (false, ps) -> string oc "Require "; list path " " oc ps; string oc ".\n" | P_require_as (p,i) -> string oc "Module "; ident oc i; string oc " := "; path oc p; string oc ".\n" | P_symbol { p_sym_mod; p_sym_nam; p_sym_arg; p_sym_typ; p_sym_trm; p_sym_prf=_; p_sym_def } -> if not (StrSet.mem p_sym_nam.elt !erase) then let p_sym_arg = if !stt then let pos = None in (* Parameters with no type are assumed to be of type [Set]. *) let _Set = {elt=P_Iden({elt=sym Set;pos},false);pos} in List.map (function ids, None, b -> ids, Some _Set, b | x -> x) p_sym_arg else p_sym_arg in begin match p_sym_def, p_sym_trm, p_sym_arg, p_sym_typ with | true, Some t, _, Some a when List.exists is_lem p_sym_mod -> (* If they have a type, opaque or private defined symbols are translated as Lemma's so that their definition is loaded in memory only when it is necessary. *) string oc "Lemma "; ident oc p_sym_nam; params_list oc p_sym_arg; string oc " : "; term oc a; string oc ".\nProof. exact ("; term oc t; string oc "). Qed.\n" | true, Some t, _, _ -> string oc "Definition "; ident oc p_sym_nam; params_list oc p_sym_arg; typopt oc p_sym_typ; string oc " := "; term oc t; if List.exists is_opaq p_sym_mod then (string oc ".\nOpaque "; ident oc p_sym_nam); string oc ".\n" | false, _, [], Some t -> string oc "Axiom "; ident oc p_sym_nam; string oc " : "; term oc t; string oc ".\n" | false, _, _, Some t -> string oc "Axiom "; ident oc p_sym_nam; string oc " : forall"; params_list oc p_sym_arg; string oc ", "; term oc t; string oc ".\n" | _ -> wrn pos "Command not translated." end | _ -> wrn pos "Command not translated." end let ast oc = Stream.iter (command oc) (** Set Coq required file. *) let require = ref None let set_requiring : string -> unit = fun f -> require := Some f let print : ast -> unit = fun s -> let oc = stdout in begin match !require with | Some f -> string oc ("Require Import "^f^".\n") | None -> () end; ast oc s
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>