package js_of_ocaml-compiler
Compiler from OCaml bytecode to JavaScript
Install
Dune Dependency
Authors
Maintainers
Sources
js_of_ocaml-6.0.1.tbz
sha256=813dbee2b62e1541049ea23a20e405cf244e27ebfa9859785cfa53e286d2c614
sha512=194ae5d1122171fa8253b6a41438a2fc330caf4ab6dd008fcce1253fd51fbe4b1149813da6075c5deb52ea136143def57c83c3f4e32421803d7699648fdc563b
doc/src/js_of_ocaml-compiler/generate_closure.ml.html
Source file generate_closure.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
(* Js_of_ocaml compiler * http://www.ocsigen.org/js_of_ocaml/ * Copyright (C) 2010 Jérôme Vouillon * Laboratoire PPS - CNRS Université Paris Diderot * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, with linking exception; * either version 2.1 of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *) open! Stdlib open Code let debug_tc = Debug.find "gen_tc" type closure_info = { f_name : Code.Var.t ; args : Code.Var.t list ; cont : Code.cont ; tc : Code.Addr.Set.t Code.Var.Map.t ; pos : int } module SCC = Strongly_connected_components.Make (Var) let add_multi k v map = let set = try Var.Map.find k map with Not_found -> Addr.Set.empty in Var.Map.add k (Addr.Set.add v set) map let rec collect_apply pc blocks visited tc = if Addr.Set.mem pc visited then visited, tc else let visited = Addr.Set.add pc visited in let block = Addr.Map.find pc blocks in let tc_opt = match block.branch with | Return x -> ( match List.last block.body with | Some (Let (y, Apply { f; exact = true; _ })) when Code.Var.compare x y = 0 -> Some (add_multi f pc tc) | None -> None | Some _ -> None) | _ -> None in match tc_opt with | Some tc -> visited, tc | None -> Code.fold_children blocks pc (fun pc (visited, tc) -> collect_apply pc blocks visited tc) (visited, tc) let rec collect_closures blocks l pos = match l with | Let (f_name, Closure (args, ((pc, _) as cont))) :: rem -> let _, tc = collect_apply pc blocks Addr.Set.empty Var.Map.empty in let l, rem = collect_closures blocks rem (succ pos) in { f_name; args; cont; tc; pos } :: l, rem | rem -> [], rem let group_closures closures_map = let names = Var.Map.fold (fun _ x names -> Var.Set.add x.f_name names) closures_map Var.Set.empty in let graph = Var.Map.fold (fun _ x graph -> let calls = Var.Map.fold (fun x _ tc -> Var.Set.add x tc) x.tc Var.Set.empty in Var.Map.add x.f_name (Var.Set.inter names calls) graph) closures_map Var.Map.empty in SCC.connected_components_sorted_from_roots_to_leaf graph |> Array.to_list type w = | One of { name : Code.Var.t ; code : Code.instr } | Wrapper of { name : Code.Var.t ; code : Code.instr ; wrapper : Code.instr } module Trampoline = struct let direct_call_block ~counter ~x ~f ~args = let return = Code.Var.fork x in match counter with | None -> { params = [] ; body = [ Let (return, Apply { f; args; exact = true }) ] ; branch = Return return } | Some counter -> let counter_plus_1 = Code.Var.fork counter in { params = [] ; body = [ Let ( counter_plus_1 , Prim (Extern "%int_add", [ Pv counter; Pc (Int Targetint.one) ]) ) ; Let (return, Apply { f; args = counter_plus_1 :: args; exact = true }) ] ; branch = Return return } let bounce_call_block ~x ~f ~args = let return = Code.Var.fork x in let new_args = Code.Var.fresh () in { params = [] ; body = [ Let ( new_args , Prim ( Extern "%js_array" , Pc (Int Targetint.zero) :: List.map args ~f:(fun x -> Pv x) ) ) ; Let (return, Prim (Extern "caml_trampoline_return", [ Pv f; Pv new_args ])) ] ; branch = Return return } let wrapper_block f ~args ~counter loc = let result1 = Code.Var.fresh () in let result2 = Code.Var.fresh () in let block = { params = [] ; body = (match counter with | None -> [ Event loc ; Let (result1, Apply { f; args; exact = true }) ; Event Parse_info.zero ; Let (result2, Prim (Extern "caml_trampoline", [ Pv result1 ])) ] | Some counter -> [ Event loc ; Let (counter, Constant (Int Targetint.zero)) ; Let (result1, Apply { f; args = counter :: args; exact = true }) ; Event Parse_info.zero ; Let (result2, Prim (Extern "caml_trampoline", [ Pv result1 ])) ]) ; branch = Return result2 } in block let wrapper_closure pc args = Closure (args, (pc, [])) let f free_pc blocks closures_map component = match component with | SCC.No_loop id -> let ci = Var.Map.find id closures_map in let instr = Let (ci.f_name, Closure (ci.args, ci.cont)) in free_pc, blocks, [ One { name = ci.f_name; code = instr } ] | SCC.Has_loop all -> if debug_tc () then ( Format.eprintf "Detect cycles of size (%d).\n%!" (List.length all); Format.eprintf "%s\n%!" (String.concat ~sep:", " (List.map all ~f:(fun x -> Var.to_string x)))); let tailcall_max_depth = Config.Param.tailcall_max_depth () in let all = List.map all ~f:(fun id -> ( (if tailcall_max_depth = 0 then None else Some (Code.Var.fresh_n "counter")) , Var.Map.find id closures_map )) in let blocks, free_pc, closures = List.fold_left all ~init:(blocks, free_pc, []) ~f:(fun (blocks, free_pc, closures) (counter, ci) -> if debug_tc () then Format.eprintf "Rewriting for %s\n%!" (Var.to_string ci.f_name); let new_f = Code.Var.fork ci.f_name in let new_args = List.map ci.args ~f:Code.Var.fork in let wrapper_pc = free_pc in let free_pc = free_pc + 1 in let new_counter = Option.map counter ~f:Code.Var.fork in let start_loc = let block = Addr.Map.find (fst ci.cont) blocks in match block.body with | Event loc :: _ -> loc | _ -> Parse_info.zero in let wrapper_block = wrapper_block new_f ~args:new_args ~counter:new_counter start_loc in let blocks = Addr.Map.add wrapper_pc wrapper_block blocks in let instr_wrapper = Let (ci.f_name, wrapper_closure wrapper_pc new_args) in let instr_real = match counter with | None -> Let (new_f, Closure (ci.args, ci.cont)) | Some counter -> Let (new_f, Closure (counter :: ci.args, ci.cont)) in let counter_and_pc = List.fold_left all ~init:[] ~f:(fun acc (counter, ci2) -> try let pcs = Addr.Set.elements (Var.Map.find ci.f_name ci2.tc) in List.map pcs ~f:(fun x -> counter, x) @ acc with Not_found -> acc) in let blocks, free_pc = List.fold_left counter_and_pc ~init:(blocks, free_pc) ~f:(fun (blocks, free_pc) (counter, pc) -> if debug_tc () then Format.eprintf "Rewriting tc in %d\n%!" pc; let block = Addr.Map.find pc blocks in let direct_call_pc = free_pc in let bounce_call_pc = free_pc + 1 in let free_pc = free_pc + 2 in match List.rev block.body with | Let (x, Apply { f; args; exact = true }) :: rem_rev -> assert (Var.equal f ci.f_name); let blocks = Addr.Map.add direct_call_pc (direct_call_block ~counter ~x ~f:new_f ~args) blocks in let blocks = Addr.Map.add bounce_call_pc (bounce_call_block ~x ~f:new_f ~args) blocks in let block = match counter with | None -> let branch = Branch (bounce_call_pc, []) in { block with body = List.rev rem_rev; branch } | Some counter -> let direct = Code.Var.fresh () in let branch = Cond (direct, (direct_call_pc, []), (bounce_call_pc, [])) in let last = Let ( direct , Prim ( Lt , [ Pv counter ; Pc (Int (Targetint.of_int_exn tailcall_max_depth)) ] ) ) in { block with body = List.rev (last :: rem_rev); branch } in let blocks = Addr.Map.remove pc blocks in Addr.Map.add pc block blocks, free_pc | _ -> assert false) in ( blocks , free_pc , Wrapper { name = ci.f_name; code = instr_real; wrapper = instr_wrapper } :: closures )) in free_pc, blocks, closures end let rec rewrite_closures free_pc blocks body : int * _ * _ list = match body with | Let (_, Closure _) :: _ -> let closures, rem = collect_closures blocks body 0 in let closures_map = List.fold_left closures ~init:Var.Map.empty ~f:(fun closures_map x -> Var.Map.add x.f_name x closures_map) in let components = group_closures closures_map in let free_pc, blocks, closures = List.fold_left components ~init:(free_pc, blocks, []) ~f:(fun (free_pc, blocks, acc) component -> let free_pc, blocks, closures = Trampoline.f free_pc blocks closures_map component in let intrs = closures :: acc in free_pc, blocks, intrs) in let closures = let pos_of_var x = (Var.Map.find x closures_map).pos in let pos = function | One { name; _ } -> pos_of_var name | Wrapper { name; _ } -> pos_of_var name in List.flatten closures |> List.sort ~cmp:(fun a b -> compare (pos a) (pos b)) |> List.concat_map ~f:(function | One { code; _ } -> [ code ] | Wrapper { code; wrapper; _ } -> [ code; wrapper ]) in let free_pc, blocks, rem = rewrite_closures free_pc blocks rem in free_pc, blocks, closures @ rem | i :: rem -> let free_pc, blocks, rem = rewrite_closures free_pc blocks rem in free_pc, blocks, i :: rem | [] -> free_pc, blocks, [] let f p : Code.program = Code.invariant p; let blocks, free_pc = Addr.Map.fold (fun pc _ (blocks, free_pc) -> (* make sure we have the latest version *) let block = Addr.Map.find pc blocks in let free_pc, blocks, body = rewrite_closures free_pc blocks block.body in Addr.Map.add pc { block with body } blocks, free_pc) p.blocks (p.blocks, p.free_pc) in (* Code.invariant (pc, blocks, free_pc); *) let p = { p with blocks; free_pc } in Code.invariant p; p let f p = assert ( match Config.effects () with | `Disabled | `Jspi -> true | `Cps | `Double_translation -> false); let open Config.Param in match tailcall_optim () with | TcNone -> p | TcTrampoline -> let t = Timer.make () in let p' = f p in if Debug.find "times" () then Format.eprintf " generate closures: %a@." Timer.print t; p'
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>