package js_of_ocaml-compiler

  1. Overview
  2. Docs
Compiler from OCaml bytecode to JavaScript

Install

Dune Dependency

Authors

Maintainers

Sources

js_of_ocaml-6.0.1.tbz
sha256=813dbee2b62e1541049ea23a20e405cf244e27ebfa9859785cfa53e286d2c614
sha512=194ae5d1122171fa8253b6a41438a2fc330caf4ab6dd008fcce1253fd51fbe4b1149813da6075c5deb52ea136143def57c83c3f4e32421803d7699648fdc563b

doc/src/js_of_ocaml-compiler/generate_closure.ml.html

Source file generate_closure.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
(* Js_of_ocaml compiler
 * http://www.ocsigen.org/js_of_ocaml/
 * Copyright (C) 2010 Jérôme Vouillon
 * Laboratoire PPS - CNRS Université Paris Diderot
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published by
 * the Free Software Foundation, with linking exception;
 * either version 2.1 of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *)
open! Stdlib
open Code

let debug_tc = Debug.find "gen_tc"

type closure_info =
  { f_name : Code.Var.t
  ; args : Code.Var.t list
  ; cont : Code.cont
  ; tc : Code.Addr.Set.t Code.Var.Map.t
  ; pos : int
  }

module SCC = Strongly_connected_components.Make (Var)

let add_multi k v map =
  let set = try Var.Map.find k map with Not_found -> Addr.Set.empty in
  Var.Map.add k (Addr.Set.add v set) map

let rec collect_apply pc blocks visited tc =
  if Addr.Set.mem pc visited
  then visited, tc
  else
    let visited = Addr.Set.add pc visited in
    let block = Addr.Map.find pc blocks in
    let tc_opt =
      match block.branch with
      | Return x -> (
          match List.last block.body with
          | Some (Let (y, Apply { f; exact = true; _ })) when Code.Var.compare x y = 0 ->
              Some (add_multi f pc tc)
          | None -> None
          | Some _ -> None)
      | _ -> None
    in
    match tc_opt with
    | Some tc -> visited, tc
    | None ->
        Code.fold_children
          blocks
          pc
          (fun pc (visited, tc) -> collect_apply pc blocks visited tc)
          (visited, tc)

let rec collect_closures blocks l pos =
  match l with
  | Let (f_name, Closure (args, ((pc, _) as cont))) :: rem ->
      let _, tc = collect_apply pc blocks Addr.Set.empty Var.Map.empty in
      let l, rem = collect_closures blocks rem (succ pos) in
      { f_name; args; cont; tc; pos } :: l, rem
  | rem -> [], rem

let group_closures closures_map =
  let names =
    Var.Map.fold (fun _ x names -> Var.Set.add x.f_name names) closures_map Var.Set.empty
  in
  let graph =
    Var.Map.fold
      (fun _ x graph ->
        let calls = Var.Map.fold (fun x _ tc -> Var.Set.add x tc) x.tc Var.Set.empty in
        Var.Map.add x.f_name (Var.Set.inter names calls) graph)
      closures_map
      Var.Map.empty
  in
  SCC.connected_components_sorted_from_roots_to_leaf graph |> Array.to_list

type w =
  | One of
      { name : Code.Var.t
      ; code : Code.instr
      }
  | Wrapper of
      { name : Code.Var.t
      ; code : Code.instr
      ; wrapper : Code.instr
      }

module Trampoline = struct
  let direct_call_block ~counter ~x ~f ~args =
    let return = Code.Var.fork x in
    match counter with
    | None ->
        { params = []
        ; body = [ Let (return, Apply { f; args; exact = true }) ]
        ; branch = Return return
        }
    | Some counter ->
        let counter_plus_1 = Code.Var.fork counter in
        { params = []
        ; body =
            [ Let
                ( counter_plus_1
                , Prim (Extern "%int_add", [ Pv counter; Pc (Int Targetint.one) ]) )
            ; Let (return, Apply { f; args = counter_plus_1 :: args; exact = true })
            ]
        ; branch = Return return
        }

  let bounce_call_block ~x ~f ~args =
    let return = Code.Var.fork x in
    let new_args = Code.Var.fresh () in
    { params = []
    ; body =
        [ Let
            ( new_args
            , Prim
                ( Extern "%js_array"
                , Pc (Int Targetint.zero) :: List.map args ~f:(fun x -> Pv x) ) )
        ; Let (return, Prim (Extern "caml_trampoline_return", [ Pv f; Pv new_args ]))
        ]
    ; branch = Return return
    }

  let wrapper_block f ~args ~counter loc =
    let result1 = Code.Var.fresh () in
    let result2 = Code.Var.fresh () in
    let block =
      { params = []
      ; body =
          (match counter with
          | None ->
              [ Event loc
              ; Let (result1, Apply { f; args; exact = true })
              ; Event Parse_info.zero
              ; Let (result2, Prim (Extern "caml_trampoline", [ Pv result1 ]))
              ]
          | Some counter ->
              [ Event loc
              ; Let (counter, Constant (Int Targetint.zero))
              ; Let (result1, Apply { f; args = counter :: args; exact = true })
              ; Event Parse_info.zero
              ; Let (result2, Prim (Extern "caml_trampoline", [ Pv result1 ]))
              ])
      ; branch = Return result2
      }
    in
    block

  let wrapper_closure pc args = Closure (args, (pc, []))

  let f free_pc blocks closures_map component =
    match component with
    | SCC.No_loop id ->
        let ci = Var.Map.find id closures_map in
        let instr = Let (ci.f_name, Closure (ci.args, ci.cont)) in
        free_pc, blocks, [ One { name = ci.f_name; code = instr } ]
    | SCC.Has_loop all ->
        if debug_tc ()
        then (
          Format.eprintf "Detect cycles of size (%d).\n%!" (List.length all);
          Format.eprintf
            "%s\n%!"
            (String.concat ~sep:", " (List.map all ~f:(fun x -> Var.to_string x))));
        let tailcall_max_depth = Config.Param.tailcall_max_depth () in
        let all =
          List.map all ~f:(fun id ->
              ( (if tailcall_max_depth = 0 then None else Some (Code.Var.fresh_n "counter"))
              , Var.Map.find id closures_map ))
        in
        let blocks, free_pc, closures =
          List.fold_left
            all
            ~init:(blocks, free_pc, [])
            ~f:(fun (blocks, free_pc, closures) (counter, ci) ->
              if debug_tc ()
              then Format.eprintf "Rewriting for %s\n%!" (Var.to_string ci.f_name);
              let new_f = Code.Var.fork ci.f_name in
              let new_args = List.map ci.args ~f:Code.Var.fork in
              let wrapper_pc = free_pc in
              let free_pc = free_pc + 1 in
              let new_counter = Option.map counter ~f:Code.Var.fork in
              let start_loc =
                let block = Addr.Map.find (fst ci.cont) blocks in
                match block.body with
                | Event loc :: _ -> loc
                | _ -> Parse_info.zero
              in
              let wrapper_block =
                wrapper_block new_f ~args:new_args ~counter:new_counter start_loc
              in
              let blocks = Addr.Map.add wrapper_pc wrapper_block blocks in
              let instr_wrapper = Let (ci.f_name, wrapper_closure wrapper_pc new_args) in
              let instr_real =
                match counter with
                | None -> Let (new_f, Closure (ci.args, ci.cont))
                | Some counter -> Let (new_f, Closure (counter :: ci.args, ci.cont))
              in
              let counter_and_pc =
                List.fold_left all ~init:[] ~f:(fun acc (counter, ci2) ->
                    try
                      let pcs = Addr.Set.elements (Var.Map.find ci.f_name ci2.tc) in
                      List.map pcs ~f:(fun x -> counter, x) @ acc
                    with Not_found -> acc)
              in
              let blocks, free_pc =
                List.fold_left
                  counter_and_pc
                  ~init:(blocks, free_pc)
                  ~f:(fun (blocks, free_pc) (counter, pc) ->
                    if debug_tc () then Format.eprintf "Rewriting tc in %d\n%!" pc;
                    let block = Addr.Map.find pc blocks in
                    let direct_call_pc = free_pc in
                    let bounce_call_pc = free_pc + 1 in
                    let free_pc = free_pc + 2 in
                    match List.rev block.body with
                    | Let (x, Apply { f; args; exact = true }) :: rem_rev ->
                        assert (Var.equal f ci.f_name);
                        let blocks =
                          Addr.Map.add
                            direct_call_pc
                            (direct_call_block ~counter ~x ~f:new_f ~args)
                            blocks
                        in
                        let blocks =
                          Addr.Map.add
                            bounce_call_pc
                            (bounce_call_block ~x ~f:new_f ~args)
                            blocks
                        in
                        let block =
                          match counter with
                          | None ->
                              let branch = Branch (bounce_call_pc, []) in
                              { block with body = List.rev rem_rev; branch }
                          | Some counter ->
                              let direct = Code.Var.fresh () in
                              let branch =
                                Cond (direct, (direct_call_pc, []), (bounce_call_pc, []))
                              in
                              let last =
                                Let
                                  ( direct
                                  , Prim
                                      ( Lt
                                      , [ Pv counter
                                        ; Pc
                                            (Int (Targetint.of_int_exn tailcall_max_depth))
                                        ] ) )
                              in
                              { block with body = List.rev (last :: rem_rev); branch }
                        in
                        let blocks = Addr.Map.remove pc blocks in
                        Addr.Map.add pc block blocks, free_pc
                    | _ -> assert false)
              in
              ( blocks
              , free_pc
              , Wrapper { name = ci.f_name; code = instr_real; wrapper = instr_wrapper }
                :: closures ))
        in
        free_pc, blocks, closures
end

let rec rewrite_closures free_pc blocks body : int * _ * _ list =
  match body with
  | Let (_, Closure _) :: _ ->
      let closures, rem = collect_closures blocks body 0 in
      let closures_map =
        List.fold_left closures ~init:Var.Map.empty ~f:(fun closures_map x ->
            Var.Map.add x.f_name x closures_map)
      in
      let components = group_closures closures_map in
      let free_pc, blocks, closures =
        List.fold_left
          components
          ~init:(free_pc, blocks, [])
          ~f:(fun (free_pc, blocks, acc) component ->
            let free_pc, blocks, closures =
              Trampoline.f free_pc blocks closures_map component
            in
            let intrs = closures :: acc in
            free_pc, blocks, intrs)
      in
      let closures =
        let pos_of_var x = (Var.Map.find x closures_map).pos in
        let pos = function
          | One { name; _ } -> pos_of_var name
          | Wrapper { name; _ } -> pos_of_var name
        in
        List.flatten closures
        |> List.sort ~cmp:(fun a b -> compare (pos a) (pos b))
        |> List.concat_map ~f:(function
             | One { code; _ } -> [ code ]
             | Wrapper { code; wrapper; _ } -> [ code; wrapper ])
      in
      let free_pc, blocks, rem = rewrite_closures free_pc blocks rem in
      free_pc, blocks, closures @ rem
  | i :: rem ->
      let free_pc, blocks, rem = rewrite_closures free_pc blocks rem in
      free_pc, blocks, i :: rem
  | [] -> free_pc, blocks, []

let f p : Code.program =
  Code.invariant p;
  let blocks, free_pc =
    Addr.Map.fold
      (fun pc _ (blocks, free_pc) ->
        (* make sure we have the latest version *)
        let block = Addr.Map.find pc blocks in
        let free_pc, blocks, body = rewrite_closures free_pc blocks block.body in
        Addr.Map.add pc { block with body } blocks, free_pc)
      p.blocks
      (p.blocks, p.free_pc)
  in
  (* Code.invariant (pc, blocks, free_pc); *)
  let p = { p with blocks; free_pc } in
  Code.invariant p;
  p

let f p =
  assert (
    match Config.effects () with
    | `Disabled | `Jspi -> true
    | `Cps | `Double_translation -> false);
  let open Config.Param in
  match tailcall_optim () with
  | TcNone -> p
  | TcTrampoline ->
      let t = Timer.make () in
      let p' = f p in
      if Debug.find "times" ()
      then Format.eprintf "  generate closures: %a@." Timer.print t;
      p'
OCaml

Innovation. Community. Security.