package grenier
A collection of various algorithms in OCaml
Install
Dune Dependency
Authors
Maintainers
Sources
grenier-0.15.tbz
sha256=dec7f84b9e93d5825f10c7dea84d5a74d7365ede45664ae63c26b5e8045c1c44
sha512=b8aa1569c2e24b89674d1b34de34cd1798896bb6a53aa5a1287f68cee880125e6b687f66ad73da9069a01cc3ece1f0684f48328b099d43529bff736b772c8fd8
doc/src/grenier.doubledouble/doubledouble.ml.html
Source file doubledouble.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
(** Copyright (c) 2013, Frédéric Bour <frederic.bour (at) lakaban.net> All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the {organization} nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. **) type t = {hi: float; lo: float} let t hi lo = {hi; lo} let float_floor = floor let int_abs = abs (* Constants *) let pi = t 3.141592653589793116e+00 1.224646799147353207e-16 let two_pi = t 6.283185307179586232e+00 2.449293598294706414e-16 let pi_2 = t 1.570796326794896558e+00 6.123233995736766036e-17 let e = t 2.718281828459045091e+00 1.445646891729250158e-16 let nan = t nan nan let zero = t 0. 0. let one = t 1. 0. let ten = t 10. 0. let k_eps = 1.23259516440783e-32 let k_split = 134217729.0 (* Conversion *) let of_float f = t f 0. let to_float {hi; lo} = hi +. lo let of_int i = of_float (float_of_int i) let to_int {hi; _} = int_of_float hi (* Predicates *) let is_nan {hi; _} = hi <> hi let is_zero t = t = zero let is_negative {hi; lo} = hi < 0. || (hi = 0. && lo < 0.) let is_positive {hi; lo} = hi > 0. || (hi = 0. && lo > 0.) (* Ordering *) let eq {hi = h1; lo = l1} {hi = h2; lo = l2} = h1 = h2 && l1 = l2 let ne {hi = h1; lo = l1} {hi = h2; lo = l2} = h1 <> h2 || l1 <> l2 let gt {hi = h1; lo = l1} {hi = h2; lo = l2} = h1 > h2 || (h1 = h2 && l1 > l2) let ge {hi = h1; lo = l1} {hi = h2; lo = l2} = h1 > h2 || (h1 = h2 && l1 >= l2) let lt {hi = h1; lo = l1} {hi = h2; lo = l2} = h1 < h2 || (h1 = h2 && l1 < l2) let le {hi = h1; lo = l1} {hi = h2; lo = l2} = h1 < h2 || (h1 = h2 && l1 <= l2) let compare t1 t2 = match t1, t2 with | {hi = h1;_}, {hi = h2;_} when h1 < h2 -> -1 | {hi = h1;_}, {hi = h2;_} when h1 > h2 -> 1 | {lo = l1;_}, {lo = l2;_} when l1 < l2 -> -1 | {lo = l1;_}, {lo = l2;_} when l1 > l2 -> 1 | _, _ -> 0 let signum = function | t when is_positive t -> 1 | t when is_negative t -> -1 | _ -> 0 (* Standard operations *) let add {hi = h1; lo = l1} {hi = h2; lo = l2} = (* S = hi + y.hi; T = lo + y.lo *) let s' = h1 +. h2 and t' = l1 +. l2 in (* e = S - hi; f = T - lo *) let e = s' -. h1 and f = t' -. l1 in (* s = S-e; t = T-f *) let s = s' -. e and t = t' -. f in (* s = (y.hi-e)+(hi-s) *) let s = (h2 -. e) +. (h1 -. s) in (* t = (y.lo-f)+(lo-t) *) let t = (l2 -. f) +. (l1 -. t) in (* e = s+T; H = S+e; h = e+(S-H); e = t+h; *) let e = s +. t' in let h' = s' +. e in let h = e +. (s' -. h') in let e = t +. h in (* hi = H + e *) let hi = h' +. e in (* lo = e + (H - hi) *) let lo = e +. (h' -. hi) in {hi; lo} let neg {hi; lo} = {hi = -.hi; lo = -.lo} let sub t1 t2 = add t1 (neg t2) (* Disable fused-multiply-add optimization See https://github.com/ocaml/ocaml/issues/10323. *) let ( *. ) x y = Sys.opaque_identity (x *. y) let mul {hi = h1; lo = l1} {hi = h2; lo = l2} = (*C = SPLIT * hi; hx = C-hi; c = SPLIT * y.hi;*) let c' = k_split *. h1 in let hx = c' -. h1 in let c = k_split *. h2 in (*hx = C-hx; tx = hi-hx; hy = c-y.hi; *) let hx = c' -. hx in let tx = h1 -. hx in let hy = c -. h2 in (*C = hi*y.hi; hy = c-hy; ty = y.hi-hy;*) let c' = h1 *. h2 in let hy = c -. hy in let ty = h2 -. hy in (*c = ((((hx*hy-C)+hx*ty)+tx*hy)+tx*ty)+(hi*y.lo+lo*y.hi);*) let c = ((((hx *. hy -. c') +. hx *. ty) +. tx *. hy) +. tx *. ty) +. (h1 *. l2 +. l1 *. h2) in let hi = c' +. c in let hx = c' -. hi in let lo = c +. hx in {hi; lo} let div {hi = h1; lo = l1} {hi = h2; lo = l2} = (* C = hi/y.hi; c = SPLIT*C; hc =c-C; u = SPLIT*y.hi; hc = c-hc;*) let c' = h1 /. h2 in let c = k_split *. c' in let hc = c -. c' in let u = k_split *. h2 in let hc = c -. hc in (* tc = C-hc; hy = u-y.hi; U = C * y.hi; hy = u-hy; ty = y.hi-hy;*) let tc = c' -. hc in let hy = u -. h2 in let u' = c' *. h2 in let hy = u -. hy in let ty = h2 -. hy in (* u = (((hc*hy-U)+hc*ty)+tc*hy)+tc*ty*) let u = (((hc *. hy -. u') +. hc *. ty) +. tc *. hy) +. tc *. ty in (* c = ((((hi-U)-u)+lo)-C*y.lo)/y.hi;*) let c = ((((h1 -. u') -. u) +. l1) -. c' *. l2) /. h2 in (* u = C+c; *) let hi = c' +. c in let lo = (c' -. hi) +. c in {hi; lo} let inv {hi; lo} = (*C = 1.0/hi; *) let c' = 1. /. hi in (*c = SPLIT*C; *) let c = k_split *. c' in (*hc =c-C; *) let hc = c -. c' in (*u = SPLIT*hi;*) let u = k_split *. hi in (*hc = c-hc; tc = C-hc; hy = u-hi; U = C*hi; hy = u-hy; ty = hi-hy;*) let hc = c -. hc in let tc = c' -. hc in let hy = u -. hi in let u' = c' *. hi in let hy = u -. hy in let ty = hi -. hy in (*u = (((hc*hy-U)+hc*ty)+tc*hy)+tc*ty;*) let u = (((hc *. hy -. u') +. hc *. ty) +. tc *. hy) +. tc *. ty in (*c = ((((1.0-U)-u))-C*lo)/hi;*) let c = ((((1.0 -. u') -. u)) -. c' *. lo) /. hi in let hi = c' +. c in let lo = (c' -. hi) +. c in {hi; lo} let floor {hi; lo} = let hi' = floor hi in let lo' = if hi' = hi then floor lo else 0. in t hi' lo' let ceil {hi; lo} = let hi' = ceil hi in let lo' = if hi' = hi then ceil lo else 0. in t hi' lo' let abs t = if is_negative t then neg t else t let trunc t = if is_positive t then floor t else ceil t let sqr t = mul t t let sqrt = function | {hi = 0.; lo = 0.} -> zero | t when is_negative t -> nan | {hi; _} as t -> let x = 1. /. sqrt hi in let ax = of_float (hi *. x) in let d = sub t (sqr ax) in let d2 = d.hi *. (x *. 0.5) in add ax (of_float d2) let rec pow acc t n = if n = 0 then acc else if n mod 2 = 1 then pow (mul t acc) (sqr t) (n / 2) else pow acc (sqr t) (n / 2) let pow t = function | 0 -> one | n when n < 0 -> let t = inv t in pow t t (-n - 1) | n -> pow t t (n - 1) (* Output functions *) let max_print_digits = 32 let dump {hi; lo} = Printf.sprintf "{hi = %f; lo = %f}" hi lo let magnitude x = let x_abs = abs_float x in let x_log = log10 x_abs in let x_mag = float_floor x_log in if x_mag = neg_infinity then -10000 else let x_apx = 10. ** x_mag in if 10. *. x_apx <= x_abs then int_of_float x_mag + 1 else int_of_float x_mag let c0 = int_of_char '0' let significant_digits t ~insert_point = let t = abs t in let mag = magnitude t.hi in let scale = pow ten mag in let t = div t scale in let t, mag = if gt t ten then div t ten, succ mag else if lt t one then mul t ten, pred mag else t, mag in let point_pos = succ mag in let num_digits = max_print_digits - 1 in let buf = Buffer.create max_print_digits in let rec aux i y = if insert_point && i = point_pos then Buffer.add_char buf '.'; let digit = int_of_float y.hi in if digit < 0 then () else let char, rebias = if digit > 9 then '0', true else char_of_int (c0 + digit), false in Buffer.add_char buf char; let y = mul (sub y (of_int digit)) ten in let y = if rebias then add y ten else y in let mag' = magnitude y.hi in (*Printf.eprintf "digit: %d, mag:%d, i:%d\n%!" digit mag' i;*) if (mag' < 0 && int_abs mag' >= num_digits - i) || (i >= num_digits) then () else aux (succ i) y in aux 0 t; mag, Buffer.contents buf let to_string_std = function | t when is_nan t -> "NaN " | t when is_zero t -> "0.0" | t -> let mag, digits = significant_digits t ~insert_point:true in let point_pos = mag + 1 in let digits = if digits.[0] = '.' then "0" ^ digits else if point_pos < 0 then "0." ^ String.make (- point_pos) '0' ^ digits else try ignore (String.index digits '.'); digits with Not_found -> let zeroes = point_pos - String.length digits in digits ^ String.make zeroes '0' ^ ".0" in if is_negative t then "-" ^ digits else digits let to_string_sci = function | t when is_nan t -> "NaN " | t when is_zero t -> "0.0E0" | t -> let mag, digits = significant_digits t ~insert_point:true in let exp_suffix = "E" ^ string_of_int mag in assert (digits.[0] <> '0'); let digits = Bytes.unsafe_of_string ("." ^ digits) in Bytes.set digits 0 (Bytes.get digits 1); Bytes.set digits 1 '.'; let digits = Bytes.unsafe_to_string digits in let digits = if is_negative t then "-" ^ digits else digits in digits ^ exp_suffix let to_string t = let mag = magnitude t.hi in if mag >= -3 && mag <= 20 then to_string_std t else to_string_sci t let of_string s = let len = String.length s in let pos = ref (-1) in let get () = incr pos; if !pos < len then Some s.[!pos] else None in (* Drop whitespaces *) while (match get () with Some ' ' | Some '\t' -> true | _ -> false) do () done; decr pos; (* Test sign *) let is_negative = match get () with | Some '-' -> true | Some '+' -> false | _ -> decr pos; false in let get_point num_digits = function None -> num_digits | Some p -> p in let rec loop pos_point num_digits t = match get () with | Some ch when ch >= '0' && ch <= '9' -> loop pos_point (succ num_digits) (add (mul t ten) (of_int (int_of_char ch - c0))) | Some '.' when pos_point = None -> loop (Some num_digits) num_digits t | Some '.' -> invalid_arg "Doubledouble.of_string: two '.'" | Some ('e'|'E') -> let exp = try int_of_string (String.sub s !pos (len - !pos)) with Invalid_argument _ -> invalid_arg "Doubledouble.of_string: invalid exponent" in num_digits, get_point num_digits pos_point, exp, t | None -> num_digits, get_point num_digits pos_point, 0, t | Some c -> Printf.ksprintf invalid_arg "Doubledouble.of_string: unknown character %C" c in let digits, point, exp, t = loop None 0 zero in let t = match digits - point - exp with | 0 -> t | n -> mul t (pow ten (-n)) in if is_negative then neg t else t let protect1 f a = if is_nan a then nan else f a let protect2 f a b = if is_nan a || is_nan b then nan else f a b let add = protect2 add let sub = protect2 sub let mul = protect2 mul let div = protect2 div let neg = protect1 neg let inv = protect1 inv let floor = protect1 floor let ceil = protect1 ceil let abs = protect1 abs let trunc = protect1 trunc let sqr = protect1 sqr let sqrt = protect1 sqrt let pow t n = if is_nan t then nan else pow t n module Infix = struct let ( +.. ) = add let ( -.. ) = sub let ( ~-.. ) = neg let ( *.. ) = mul let ( /.. ) = div let ( **.. ) = pow let ( <.. ) = lt let ( >.. ) = gt let ( =.. ) = eq let ( <>.. ) = ne let ( <=.. ) = le let ( >=.. ) = ge end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>