package grenier
A collection of various algorithms in OCaml
Install
Dune Dependency
Authors
Maintainers
Sources
grenier-0.15.tbz
sha256=dec7f84b9e93d5825f10c7dea84d5a74d7365ede45664ae63c26b5e8045c1c44
sha512=b8aa1569c2e24b89674d1b34de34cd1798896bb6a53aa5a1287f68cee880125e6b687f66ad73da9069a01cc3ece1f0684f48328b099d43529bff736b772c8fd8
doc/src/grenier.balmap/set.ml.html
Source file set.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
module type OrderedType = Stdlib.Set.OrderedType module type S = Stdlib.Set.S type +'a balset = 'a Bt1.t = private | Leaf | Node of int * 'a balset * 'a * 'a balset module Make (O : OrderedType) : S with type elt = O.t and type t = O.t balset = struct type elt = O.t type t = O.t balset let empty = Bt1.leaf let is_empty = function Leaf -> true | Node _ -> false let rec mem k = function | Leaf -> false | Node (_, l, k', r) -> let c = O.compare k k' in if c < 0 then mem k l else if c > 0 then mem k r else true let singleton k = Bt1.node Bt1.leaf k Bt1.leaf let rec add k = function | Leaf -> singleton k | Node (_, l, k', r) -> let c = O.compare k k' in if c < 0 then Bt1.node (add k l) k' r else if c > 0 then Bt1.node l k' (add k r) else Bt1.node l k r let rec remove k = function | Leaf -> raise Not_found | Node (_, l, k', r) -> let c = O.compare k k' in if c < 0 then Bt1.node (remove k l) k' r else if c > 0 then Bt1.node l k' (remove k r) else Bt1.join l r let remove k t = try remove k t with Not_found -> t let rec split k = function | Leaf -> Bt1.leaf, false, Bt1.leaf | Node (_, l, k', r) -> let c = O.compare k k' in if c < 0 then let l', v', r' = split k l in l', v', Bt1.join r' r else if c > 0 then let l', v', r' = split k r in Bt1.join l l', v', r' else (l, true, r) let rec union t1 t2 = match t1, t2 with | Leaf, t | t, Leaf -> t | t1, Node (_, l2, k2, r2) -> let l1, _, r1 = split k2 t1 in let l' = union l1 l2 in let r' = union r1 r2 in Bt1.node l' k2 r' let union3 l k r = union (add k l) r let cardinal = Bt1.size type enumeration = | End | More of elt * t * enumeration let rec cons_enum t e = match t with | Leaf -> e | Node (_, l, k, r) -> cons_enum l (More (k, r, e)) let compare t1 t2 = if t1 == t2 then 0 else match Int.compare (cardinal t1) (cardinal t2) with | 0 -> let rec compare_aux = function | (End, End) -> 0 | (End, _ ) | (_ , End) -> assert false | (More (k1, r1, e1), More (k2, r2, e2)) -> match O.compare k1 k2 with | 0 -> if r1 == r2 then compare_aux (e1, e2) else compare_aux (cons_enum r1 e1, cons_enum r2 e2) | n -> n in compare_aux (cons_enum t1 End, cons_enum t2 End) | n -> n let equal t1 t2 = t1 == t2 && Int.equal (cardinal t1) (cardinal t2) && let rec equal_aux = function | (End, End) -> true | (End, _ ) | (_ , End) -> assert false | (More (k1, r1, e1), More (k2, r2, e2)) -> match O.compare k1 k2 with | 0 -> if r1 == r2 then equal_aux (e1, e2) else equal_aux (cons_enum r1 e1, cons_enum r2 e2) | _ -> false in equal_aux (cons_enum t1 End, cons_enum t2 End) let rec iter f = function | Leaf -> () | Node (_, l, k, r) -> iter f l; f k; iter f r let rec fold f t acc = match t with | Leaf -> acc | Node (_, l, k, r) -> let acc = fold f l acc in let acc = f k acc in let acc = fold f r acc in acc let rec for_all f = function | Leaf -> true | Node (_, l, k, r) -> for_all f l && f k && for_all f r let rec exists f = function | Leaf -> false | Node (_, l, k, r) -> exists f l || f k || exists f r let rec filter f = function | Leaf -> Bt1.leaf | Node (_, l, k, r) -> let l' = filter f l in let keep = f k in let r' = filter f r in if keep then Bt1.node l' k r' else Bt1.join l' r' let rec filter_map f = function | Leaf -> Bt1.leaf | Node (_, l, k, r) -> let l' = filter_map f l in let k' = f k in let r' = filter_map f r in match k' with | None -> union l' r' | Some k' -> union3 l' k' r' let rec partition f = function | Leaf -> Bt1.leaf, Bt1.leaf | Node (_, l, k, r) -> let l1, l2 = partition f l in let side = f k in let r1, r2 = partition f r in if side then (Bt1.node l1 k r1, Bt1.join l2 r2) else (Bt1.join l1 r1, Bt1.node l2 k r2) let of_list l = List.fold_left (fun t a -> add a t) empty l let elements t = let rec aux t acc = match t with | Leaf -> acc | Node (_, l, k, r) -> aux l (k :: aux r acc) in aux t [] let rec min_elt = function | Leaf -> raise Not_found | Node (_, Leaf, k, _) -> k | Node (_, l, _, _) -> min_elt l let rec min_elt_opt = function | Leaf -> None | Node (_, Leaf, k, _) -> Some k | Node (_, l, _, _) -> min_elt_opt l let rec max_elt = function | Leaf -> raise Not_found | Node (_, _, k, Leaf) -> k | Node (_, _, _, r) -> max_elt r let rec max_elt_opt = function | Leaf -> None | Node (_, _, k, Leaf) -> Some k | Node (_, _, _, r) -> max_elt_opt r let choose = min_elt let choose_opt = min_elt_opt let rec find k = function | Leaf -> raise Not_found | Node (_, l, k', r) -> let c = O.compare k k' in if c < 0 then find k l else if c > 0 then find k r else k' let rec find_opt k = function | Leaf -> None | Node (_, l, k', r) -> let c = O.compare k k' in if c < 0 then find_opt k l else if c > 0 then find_opt k r else Some k' let rec find_first_opt f = function | Leaf -> None | Node (_, l, k', r) -> if f k' then match find_first_opt f l with | None -> Some k' | Some _ as result -> result else find_first_opt f r let find_first f t = match find_first_opt f t with | None -> raise Not_found | Some kv -> kv let rec find_last_opt f = function | Leaf -> None | Node (_, l, k', r) -> if f k' then match find_last_opt f r with | None -> Some k' | Some _ as result -> result else find_last_opt f l let find_last f t = match find_last_opt f t with | None -> raise Not_found | Some kv -> kv let rec map f = function | Leaf -> Bt1.leaf | Node (_, l, k, r) -> let l' = map f l in let k' = f k in let r' = map f r in union3 l' k' r' let rec seq_enum enum () = match enum with | End -> Seq.Nil | More (k, r, e) -> Seq.Cons (k, seq_enum (cons_enum r e)) let to_seq = function | Leaf -> Seq.empty | t -> seq_enum (cons_enum t End) let rec snoc_enum t e = match t with | Leaf -> e | Node (_, l, k, r) -> snoc_enum r (More (k, l, e)) let to_rev_seq = function | Leaf -> Seq.empty | t -> let rec seq enum () = match enum with | End -> Seq.Nil | More (k, r, e) -> Seq.Cons (k, seq (snoc_enum r e)) in seq (snoc_enum t End) let rec cons_from k e = function | Leaf -> e | Node (_, l, k', r) -> let c = O.compare k k' in if c < 0 then cons_from k (More (k', r, e)) l else if c > 0 then cons_from k e r else More (k', r, e) let to_seq_from k t = seq_enum (cons_from k End t) let add_seq seq t = Seq.fold_left (fun t k -> add k t) t seq let of_seq seq = add_seq seq empty let subset t1 t2 = cardinal t1 <= cardinal t2 && let rec aux = function | Bt1.Leaf -> true | Bt1.Node (_, l, k, r) -> mem k t2 && aux l && aux r in aux t1 let rec disjoint t1 t2 = match t1, t2 with | Leaf, _ | _, Leaf -> true | Node (_, l1, k1, r1), t2 -> let l2, k2, r2 = split k1 t2 in not k2 && disjoint l1 l2 && disjoint r1 r2 let rec diff t1 t2 = match t1, t2 with | Leaf, _ -> Bt1.leaf | t1, Leaf -> t1 | Node (_, l1, k, r1), t2 -> let l2, drop, r2 = split k t2 in let l = diff l1 l2 in let r = diff r1 r2 in if drop then Bt1.join l r else Bt1.node l k r let rec inter t1 t2 = match t1, t2 with | Leaf, _ | _, Leaf -> empty | Node (_, l1, k1, r1), t2 -> let l2, keep, r2 = split k1 t2 in let l = inter l1 l2 in let r = inter r1 r2 in if keep then Bt1.node l k1 r else Bt1.join l r let to_list = elements end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>