package grenier
A collection of various algorithms in OCaml
Install
Dune Dependency
Authors
Maintainers
Sources
grenier-0.15.tbz
sha256=dec7f84b9e93d5825f10c7dea84d5a74d7365ede45664ae63c26b5e8045c1c44
sha512=b8aa1569c2e24b89674d1b34de34cd1798896bb6a53aa5a1287f68cee880125e6b687f66ad73da9069a01cc3ece1f0684f48328b099d43529bff736b772c8fd8
doc/src/grenier.valmari/valmari.ml.html
Source file valmari.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
module Fin = Strong.Finite module type DFA = sig type states val states : states Fin.set type transitions val transitions : transitions Fin.set type label val label : transitions Fin.elt -> label val source : transitions Fin.elt -> states Fin.elt val target : transitions Fin.elt -> states Fin.elt end module type INPUT = sig include DFA val initials : (states Fin.elt -> unit) -> unit val finals : (states Fin.elt -> unit) -> unit val refinements : refine:(iter:((states Fin.elt -> unit) -> unit) -> unit) -> unit end let index_transitions (type state) (type transition) (states : state Fin.set) (transitions : transition Fin.set) (target : transition Fin.elt -> state Fin.elt) : state Fin.elt -> (transition Fin.elt -> unit) -> unit = let f = Array.make (Fin.Set.cardinal states + 1) 0 in Fin.Set.iter transitions (fun t -> let state = (target t :> int) in f.(state) <- f.(state) + 1 ); for i = 0 to Fin.Set.cardinal states - 1 do f.(i + 1) <- f.(i + 1) + f.(i) done; let a = Array.make (Fin.Set.cardinal transitions) (Fin.Elt.of_int transitions 0) in Fin.Set.rev_iter transitions (fun t -> let state = (target t :> int) in let index = f.(state) - 1 in f.(state) <- index; a.(index) <- t ); (fun st fn -> let st = (st : state Fin.elt :> int) in for i = f.(st) to f.(st + 1) - 1 do fn a.(i) done ) let discard_unreachable (type state) (type transition) (blocks : state Partition.t) (transitions_of : state Fin.elt -> (transition Fin.elt -> unit) -> unit) (target : transition Fin.elt -> state Fin.elt) = Partition.iter_marked_elements blocks 0 (fun state -> transitions_of state (fun transition -> Partition.mark blocks (target transition)) ); Partition.discard_unmarked blocks module Minimize (Label : Map.OrderedType) (In: INPUT with type label := Label.t) : sig include DFA with type label = Label.t val initials : states Fin.elt array val finals : states Fin.elt array val transport_state : In.states Fin.elt -> states Fin.elt option val transport_transition : In.transitions Fin.elt -> transitions Fin.elt option val represent_state : states Fin.elt -> In.states Fin.elt val represent_transition : transitions Fin.elt -> In.transitions Fin.elt end = struct (* State partition *) let blocks = Partition.create In.states (* Remove states unreachable from initial state *) let () = In.initials (Partition.mark blocks); let transitions_source = index_transitions In.states In.transitions In.source in discard_unreachable blocks transitions_source In.target (* Index the set of transitions targeting a state *) let transitions_targeting = index_transitions In.states In.transitions In.target (* Remove states which cannot reach any final state *) let () = In.finals (Partition.mark blocks); discard_unreachable blocks transitions_targeting In.source (* Split final states *) let () = In.finals (Partition.mark blocks); Partition.split blocks (* Split explicitely refined states *) let () = let refine ~iter = iter (Partition.mark blocks); Partition.split blocks in In.refinements ~refine (* Transition partition *) let cords = let partition t1 t2 = Label.compare (In.label t1) (In.label t2) in Partition.create In.transitions ~partition let () = Partition.discard cords (fun t -> Partition.set_of blocks (In.source t) = -1 || Partition.set_of blocks (In.target t) = -1 ) (* Main loop, split the sets *) let () = let block_set = ref 1 in let cord_set = ref 0 in while !cord_set < Partition.set_count cords do Partition.iter_elements cords !cord_set (fun transition -> Partition.mark blocks (In.source transition)); Partition.split blocks; while !block_set < Partition.set_count blocks do Partition.iter_elements blocks !block_set (fun state -> transitions_targeting state (Partition.mark cords) ); Partition.split cords; incr block_set; done; incr cord_set; done module States = Strong.Natural.Nth(struct let n = Partition.set_count blocks end) type states = States.n let states = States.n module Transitions = Fin.Array.Of_array(struct type a = In.transitions Fin.elt let table = let count = ref 0 in Fin.Set.iter In.transitions (fun tr -> if Partition.is_first blocks (In.source tr) && Partition.set_of blocks (In.target tr) > -1 then incr count ); match !count with | 0 -> [||] | n -> Array.make n (Fin.Elt.of_int In.transitions 0) let () = let count = ref 0 in Fin.Set.iter In.transitions (fun tr -> if Partition.is_first blocks (In.source tr) && Partition.set_of blocks (In.target tr) > -1 then ( let index = !count in incr count; table.(index) <- tr ) ); end) type transitions = Transitions.n let transitions = Transitions.n type label = Label.t let transport_state_unsafe = let table = Fin.Array.init In.states (Partition.set_of blocks) in Fin.Array.get table let represent_state = let table = Fin.Array.init states (fun st -> Partition.choose blocks (st : states Fin.elt :> int)) in Fin.Array.get table let represent_transition transition = Fin.(Transitions.table.(transition)) let label transition : Label.t = In.label (represent_transition transition) let source transition = Fin.Elt.of_int states (transport_state_unsafe (In.source (represent_transition transition))) let target transition = Fin.Elt.of_int states (transport_state_unsafe (In.target (represent_transition transition))) let initials = In.initials (Partition.mark blocks); let sets = Partition.marked_sets blocks in Partition.clear_marks blocks; Array.map (Fin.Elt.of_int states) (Array.of_list sets) let finals = In.finals (Partition.mark blocks); let sets = Partition.marked_sets blocks in Partition.clear_marks blocks; Array.map (Fin.Elt.of_int states) (Array.of_list sets) let transport_state state = match transport_state_unsafe state with | -1 -> None | n -> Some (Fin.Elt.of_int states n) let transport_transition = let table = Fin.Array.make In.transitions None in Fin.Array.iteri (fun tr trin -> assert (Fin.Array.get table trin = None); Fin.Array.set table trin (Some tr); ) Transitions.table; Fin.Array.get table end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>