package frama-c
Platform dedicated to the analysis of source code written in C
Install
Dune Dependency
Authors
-
MMichele Alberti
-
TThibaud Antignac
-
GGergö Barany
-
PPatrick Baudin
-
NNicolas Bellec
-
TThibaut Benjamin
-
AAllan Blanchard
-
LLionel Blatter
-
FFrançois Bobot
-
RRichard Bonichon
-
VVincent Botbol
-
QQuentin Bouillaguet
-
DDavid Bühler
-
ZZakaria Chihani
-
LLoïc Correnson
-
JJulien Crétin
-
PPascal Cuoq
-
ZZaynah Dargaye
-
BBasile Desloges
-
JJean-Christophe Filliâtre
-
PPhilippe Herrmann
-
MMaxime Jacquemin
-
FFlorent Kirchner
-
AAlexander Kogtenkov
-
RRemi Lazarini
-
TTristan Le Gall
-
JJean-Christophe Léchenet
-
MMatthieu Lemerre
-
DDara Ly
-
DDavid Maison
-
CClaude Marché
-
AAndré Maroneze
-
TThibault Martin
-
FFonenantsoa Maurica
-
MMelody Méaulle
-
BBenjamin Monate
-
YYannick Moy
-
PPierre Nigron
-
AAnne Pacalet
-
VValentin Perrelle
-
GGuillaume Petiot
-
DDario Pinto
-
VVirgile Prevosto
-
AArmand Puccetti
-
FFélix Ridoux
-
VVirgile Robles
-
JJan Rochel
-
MMuriel Roger
-
JJulien Signoles
-
NNicolas Stouls
-
KKostyantyn Vorobyov
-
BBoris Yakobowski
Maintainers
Sources
frama-c-29.0-Copper.tar.gz
sha256=d2fbb3b8d0ff83945872e9e6fa258e934a706360e698dae3b4d5f971addf7493
doc/src/qed/intmap.ml.html
Source file intmap.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
(**************************************************************************) (* *) (* This file is part of WP plug-in of Frama-C. *) (* *) (* Copyright (C) 2007-2024 *) (* CEA (Commissariat a l'energie atomique et aux energies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) (* ---------------------------------------------------------------------- *) (* --- Patricia Trees By L. Correnson & P. Baudin --- *) (* ---------------------------------------------------------------------- *) type 'a t = | Empty | Lf of int * 'a | Br of int * 'a t * 'a t (* -------------------------------------------------------------------------- *) (* --- Bit library --- *) (* -------------------------------------------------------------------------- *) let hsb = let hsb p = if p land 2 != 0 then 1 else 0 in let hsb p = let n = p lsr 2 in if n != 0 then 2 + hsb n else hsb p in let hsb p = let n = p lsr 4 in if n != 0 then 4 + hsb n else hsb p in let hsb = Array.init 256 hsb in let hsb p = let n = p lsr 8 in if n != 0 then 8 + hsb.(n) else hsb.(p) in let hsb p = let n = p lsr 16 in if n != 0 then 16 + hsb n else hsb p in match Sys.word_size with | 32 -> hsb | 64 -> (function p -> let n = p lsr 32 in if n != 0 then 32 + hsb n else hsb p) | _ -> assert false let highest_bit x = 1 lsl (hsb x) let lowest_bit x = x land (-x) let decode_mask p = lowest_bit (lnot p) (* -------------------------------------------------------------------------- *) (* --- Debug --- *) (* -------------------------------------------------------------------------- *) let pp_mask m fmt p = begin let bits = Array.make 63 false in let last = ref 0 in for i = 0 to 62 do let u = 1 lsl i in if u land p <> 0 then bits.(i) <- true ; if u == m then last := i ; done ; Format.pp_print_char fmt '*' ; for i = !last - 1 downto 0 do Format.pp_print_char fmt (if bits.(i) then '1' else '0') ; done ; end let pp_bits fmt k = begin let bits = Array.make 63 false in let last = ref 0 in for i = 0 to 62 do if (1 lsl i) land k <> 0 then ( bits.(i) <- true ; if i > !last then last := i ) ; done ; for i = !last downto 0 do Format.pp_print_char fmt (if bits.(i) then '1' else '0') ; done ; end let rec pp_tree tab fmt = function | Empty -> () | Lf(k,_) -> Format.fprintf fmt "%sL%a=%d@\n" tab pp_bits k k | Br(p,l,r) -> let next = tab ^ " " in pp_tree next fmt l ; Format.fprintf fmt "%s@@%a@\n" tab (pp_mask (decode_mask p)) p ; pp_tree next fmt r (* -------------------------------------------------------------------------- *) (* --- Bit utilities --- *) (* -------------------------------------------------------------------------- *) let decode_mask p = lowest_bit (lnot p) let branching_bit p0 p1 = highest_bit (p0 lxor p1) let mask p m = (p lor (m-1)) land (lnot m) let zero_bit_int k m = (k land m) == 0 let zero_bit k p = zero_bit_int k (decode_mask p) let match_prefix_int k p m = (mask k m) == p let match_prefix k p = match_prefix_int k p (decode_mask p) let included_mask_int m n = (* m mask is strictly included into n *) (* can not use (m < n) when n is (1 lsl 62) = min_int < 0 *) (* must use (0 < (n-m) instead *) 0 > n - m let included_prefix p q = let m = decode_mask p in let n = decode_mask q in included_mask_int m n && match_prefix_int q p m (* -------------------------------------------------------------------------- *) (* --- Smart Constructors --- *) (* -------------------------------------------------------------------------- *) let empty = Empty let singleton k x = Lf(k,x) let lf k = function None -> Empty | Some x -> Lf(k,x) (* good sharing *) let lf0 k x' t' = function None -> Empty | Some x -> if x == x' then t' else Lf(k,x) (* good sharing *) let br0 p t0' t1' t' = function | Empty -> t1' | t0 -> if t0' == t0 then t' else Br(p,t0,t1') (* good sharing *) let br1 p t0' t1' t' = function | Empty -> t0' | t1 -> if t1' == t1 then t' else Br(p,t0',t1) let join p t0 q t1 = let m = branching_bit p q in let r = mask p m in if zero_bit p r then Br(r,t0,t1) else Br(r,t1,t0) (* t0 and t1 has different prefix, but best common prefix is unknown *) let glue t0 t1 = match t0 , t1 with | Empty,t | t,Empty -> t | (Lf(p,_) | Br(p,_,_)) , (Lf(q,_) | Br(q,_,_)) -> join p t0 q t1 let glue0 t0 t0' t1' t' = if t0 == t0' then t' else glue t0 t1' let glue1 t1 t0' t1' t' = if t1 == t1' then t' else glue t0' t1 let glue01 t0 t1 t0' t1' t' = if t0 == t0' && t1 == t1' then t' else glue t0 t1 let glue2 t0 t1 t0' t1' t' s0' s1' s' = if t0 == s0' && t1 == s1' then s' else if t0 == t0' && t1 == t1' then t' else glue t0 t1 (* -------------------------------------------------------------------------- *) (* --- Access API --- *) (* -------------------------------------------------------------------------- *) let is_empty = function | Empty -> true | Lf _ | Br _ -> false let size t = let rec walk n = function | Empty -> n | Lf _ -> succ n | Br(_,a,b) -> walk (walk n a) b in walk 0 t let rec mem k = function | Empty -> false | Lf(i,_) -> i=k | Br(p,t0,t1) -> match_prefix k p && mem k (if zero_bit k p then t0 else t1) let rec findq k = function | Empty -> raise Not_found | Lf(i,x) as t -> if k = i then (x,t) else raise Not_found | Br(p,t0,t1) -> if match_prefix k p then findq k (if zero_bit k p then t0 else t1) else raise Not_found let find k m = fst (findq k m) (* -------------------------------------------------------------------------- *) (* --- Comparison --- *) (* -------------------------------------------------------------------------- *) let rec compare cmp s t = if s == t then 0 else match s , t with | Empty , Empty -> 0 | Empty , _ -> (-1) | _ , Empty -> 1 | Lf(i,x) , Lf(j,y) -> let ck = Stdlib.compare i j in if ck = 0 then cmp x y else ck | Lf _ , _ -> (-1) | _ , Lf _ -> 1 | Br(p,s0,s1) , Br(q,t0,t1) -> let cp = Stdlib.compare p q in if cp <> 0 then cp else let c0 = compare cmp s0 t0 in if c0 <> 0 then c0 else compare cmp s1 t1 let rec equal eq s t = if s == t then true else match s , t with | Empty , Empty -> true | Empty , _ -> false | _ , Empty -> false | Lf(i,x) , Lf(j,y) -> i == j && eq x y | Lf _ , _ -> false | _ , Lf _ -> false | Br(p,s0,s1) , Br(q,t0,t1) -> p==q && equal eq s0 t0 && equal eq s1 t1 (* -------------------------------------------------------------------------- *) (* --- Addition, Insert, Change, Remove --- *) (* -------------------------------------------------------------------------- *) (* good sharing *) let rec change phi k x = function | Empty as t -> (match phi k x None with | None -> t | Some w -> Lf(k,w)) | Lf(i,y) as t -> if i = k then lf0 k y t (phi k x (Some y)) else (match phi k x None with | None -> t | Some w -> let s = Lf(k,w) in join k s i t) | Br(p,t0,t1) as t -> if match_prefix k p then (* k belongs to tree *) if zero_bit k p then br0 p t0 t1 t (change phi k x t0) (* k is in t0 *) else br1 p t0 t1 t (change phi k x t1) (* k is in t1 *) else (* k is disjoint from tree *) (match phi k x None with | None -> t | Some w -> let s = Lf(k,w) in join k s p t) (* good sharing *) let insert f k x = change (fun _k x -> function | None -> Some x | Some old -> Some (f k x old)) k x (* good sharing *) let add k x = change (fun _k x _old -> Some x) k x (* good sharing *) let remove k = change (fun _k () _old -> None) k () (* -------------------------------------------------------------------------- *) (* --- Map --- *) (* -------------------------------------------------------------------------- *) let mapi phi = let rec mapi phi = function | Empty -> Empty | Lf(k,x) -> Lf(k,phi k x) | Br(p,t0,t1) -> let t0 = mapi phi t0 in let t1 = mapi phi t1 in Br(p,t0,t1) in function (* to be sorted *) | Empty -> Empty | Lf(k,x) -> Lf(k,phi k x) | Br(p,t0,t1) when p = max_int -> let t1 = mapi phi t1 in let t0 = mapi phi t0 in Br(p,t0,t1) | Br(p,t0,t1) -> let t0 = mapi phi t0 in let t1 = mapi phi t1 in Br(p,t0,t1) let map phi = mapi (fun _ x -> phi x) let mapf phi = let rec mapf phi = function | Empty -> Empty | Lf(k,x) -> lf k (phi k x) | Br(_,t0,t1) -> glue (mapf phi t0) (mapf phi t1) in function (* to be sorted *) | Empty -> Empty | Lf(k,x) -> lf k (phi k x) | Br(p,t0,t1) when p = max_int -> let t1 = mapf phi t1 in let t0 = mapf phi t0 in glue t0 t1 | Br(_,t0,t1) -> let t0 = mapf phi t0 in let t1 = mapf phi t1 in glue t0 t1 (* good sharing *) let mapq phi = let rec mapq phi = function | Empty as t -> t | Lf(k,x) as t -> lf0 k x t (phi k x) | Br(_,t0,t1) as t-> let t0' = mapq phi t0 in let t1' = mapq phi t1 in glue01 t0' t1' t0 t1 t in function (* to be sorted *) | Empty as t -> t | Lf(k,x) as t -> lf0 k x t (phi k x) | Br(p,t0,t1) as t when p = max_int -> let t1' = mapq phi t1 in let t0' = mapq phi t0 in glue01 t0' t1' t0 t1 t | Br(_,t0,t1) as t-> let t0' = mapq phi t0 in let t1' = mapq phi t1 in glue01 t0' t1' t0 t1 t (* good sharing *) let filter f m = mapq (fun k v -> if f k v then Some v else None) m (* good sharing *) let rec partition p = function | Empty as t -> (t,t) | Lf(k,x) as t -> if p k x then t,Empty else Empty,t | Br(_,t0,t1) as t-> let (t0',u0') = partition p t0 in let (t1',u1') = partition p t1 in if t0'==t0 && t1'==t1 then (t, u0') (* u0' and u1' are empty *) else if u0'==t0 && u1'==t1 then (t0', t) (* t0' and t1' are empty *) else (glue t0' t1'),(glue u0' u1') (* good sharing *) let rec partition_split p = function | Empty as t -> (t,t) | Lf(k,x) as t -> let u,v = p k x in (lf0 k x t u), (lf0 k x t v) | Br(_,t0,t1) as t-> let t0',u0' = partition_split p t0 in let t1',u1' = partition_split p t1 in if t0'==t0 && t1'==t1 then (t, u0') (* u0' and u1' are empty *) else if u0'==t0 && u1'==t1 then (t0', t) (* t0' and t1' are empty *) else (glue t0' t1'),(glue u0' u1') (* -------------------------------------------------------------------------- *) (* --- Iter --- *) (* -------------------------------------------------------------------------- *) let iteri phi = let rec aux = function | Empty -> () | Lf(k,x) -> phi k x | Br(_,t0,t1) -> aux t0 ; aux t1 in function (* to be sorted *) | Empty -> () | Lf(k,x) -> phi k x | Br(p,t0,t1) when p = max_int -> aux t1 ; aux t0 | Br(_,t0,t1) -> aux t0 ; aux t1 let iter phi = iteri (fun _ x -> phi x) let foldi phi t e = (* increasing order *) let rec aux t e = match t with | Empty -> e | Lf(i,x) -> phi i x e | Br(_,t0,t1) -> aux t1 (aux t0 e) in match t with (* to be sorted *) | Empty -> e | Lf(i,x) -> phi i x e | Br(p,t0,t1) when p = max_int -> aux t0 (aux t1 e) | Br(_,t0,t1) -> aux t1 (aux t0 e) let fold phi = foldi (fun _ x e -> phi x e) let foldd phi t e = (* decreasing order *) let rec aux t e = match t with | Empty -> e | Lf(i,x) -> phi i x e | Br(_,t0,t1) -> aux t0 (aux t1 e) in match t with (* to be sorted *) | Empty -> e | Lf(i,x) -> phi i x e | Br(p,t0,t1) when p = max_int -> aux t1 (aux t0 e) | Br(_,t0,t1) -> aux t0 (aux t1 e) (* decreasing order on f to have the list in increasing order *) let mapl f m = foldd (fun k v a -> (f k v)::a) m [] let for_all phi = (* increasing order *) let rec aux = function | Empty -> true | Lf(k,x) -> phi k x | Br(_,t0,t1) -> aux t0 && aux t1 in function (* to be sorted *) | Empty -> true | Lf(k,x) -> phi k x | Br(p,t0,t1) when p = max_int -> aux t1 && aux t0 | Br(_,t0,t1) -> aux t0 && aux t1 let exists phi = (* increasing order *) let rec aux = function | Empty -> false | Lf(k,x) -> phi k x | Br(_,t0,t1) -> aux t0 || aux t1 in function (* to be sorted *) | Empty -> false | Lf(k,x) -> phi k x | Br(p,t0,t1) when p = max_int -> aux t1 || aux t0 | Br(_,t0,t1) -> aux t0 || aux t1 (* -------------------------------------------------------------------------- *) (* --- Inter --- *) (* -------------------------------------------------------------------------- *) let occur i t = try Some (find i t) with Not_found -> None let rec interi lf_phi s t = match s , t with | Empty , _ -> Empty | _ , Empty -> Empty | Lf(i,x) , Lf(j,y) -> if i = j then lf_phi i x y else Empty | Lf(i,x) , Br _ -> (match occur i t with None -> Empty | Some y -> lf_phi i x y) | Br _ , Lf(j,y) -> (match occur j s with None -> Empty | Some x -> lf_phi j x y) | Br(p,s0,s1) , Br(q,t0,t1) -> if p == q then (* prefixes agree *) glue (interi lf_phi s0 t0) (interi lf_phi s1 t1) else if included_prefix p q then (* q contains p. Intersect t with a subtree of s *) if zero_bit q p then interi lf_phi s0 t (* t has bit m = 0 => t is inside s0 *) else interi lf_phi s1 t (* t has bit m = 1 => t is inside s1 *) else if included_prefix q p then (* p contains q. Intersect s with a subtree of t *) if zero_bit p q then interi lf_phi s t0 (* s has bit n = 0 => s is inside t0 *) else interi lf_phi s t1 (* t has bit n = 1 => s is inside t1 *) else (* prefix disagree *) Empty let inter phi = interi (fun i x y -> Lf(i,phi i x y)) let interf phi = interi (fun i x y -> lf i (phi i x y)) (* good sharing with s *) let lfq phi i x y s t = match phi i x y with None -> Empty | Some w -> if w == x then s else if w == y then t else Lf(i,w) let occur0 phi i x s t = try let (y,t) = findq i t in lfq phi i x y s t with Not_found -> Empty let occur1 phi j y s t = try let (x,s) = findq j s in lfq phi j x y s t with Not_found -> Empty (* good sharing with s *) let rec interq phi s t = match s , t with | Empty , _ -> s | _ , Empty -> t | Lf(i,x) , Lf(j,y) -> if i = j then lfq phi i x y s t else Empty | Lf(i,x) , Br _ -> occur0 phi i x s t | Br _ , Lf(j,y) -> occur1 phi j y s t | Br(p,s0,s1) , Br(q,t0,t1) -> if p == q then (* prefixes agree *) glue2 (interq phi s0 t0) (interq phi s1 t1) s0 s1 s t0 t1 t else if included_prefix p q then (* q contains p. Intersect t with a subtree of s *) if zero_bit q p then interq phi s0 t (* t has bit m = 0 => t is inside s0 *) else interq phi s1 t (* t has bit m = 1 => t is inside s1 *) else if included_prefix q p then (* p contains q. Intersect s with a subtree of t *) if zero_bit p q then interq phi s t0 (* s has bit n = 0 => s is inside t0 *) else interq phi s t1 (* t has bit n = 1 => s is inside t1 *) else (* prefix disagree *) Empty (* -------------------------------------------------------------------------- *) (* --- Union --- *) (* -------------------------------------------------------------------------- *) (* good sharing with s *) let br2u p s0' s1' s' t0' t1' t' t0 t1= if s0'==t0 && s1'== t1 then s' else if t0'==t0 && t1'== t1 then t' else Br(p, t0, t1) (* good sharing with s *) let br0u p t0' t1' t' t0 = if t0'==t0 then t' else Br(p, t0, t1') let br1u p t0' t1' t' t1 = if t1'==t1 then t' else Br(p, t0', t1) (* good sharing with s *) let rec union phi s t = match s , t with | Empty , _ -> t | _ , Empty -> s | Lf(i,x) , Lf(j,y) -> if i = j then let w = phi i x y in if w == x then s else if w == y then t else Lf(i,w) else join i s j t | Lf(i,x) , Br _ -> insert phi i x t | Br _ , Lf(j,y) -> insert (fun j y x -> phi j x y) j y s | Br(p,s0,s1) , Br(q,t0,t1) -> if p == q then (* prefixes agree *) br2u p s0 s1 s t0 t1 t (union phi s0 t0) (union phi s1 t1) else if included_prefix p q then (* q contains p. Merge t with a subtree of s *) if zero_bit q p then br0u p s0 s1 s (union phi s0 t) (* t has bit m = 0 => t is inside s0 *) else br1u p s0 s1 s (union phi s1 t) (* t has bit m = 1 => t is inside s1 *) else if included_prefix q p then (* p contains q. Merge s with a subtree of t *) if zero_bit p q then br0u q t0 t1 t (union phi s t0) (* s has bit n = 0 => s is inside t0 *) else br1u q t0 t1 t (union phi s t1) (* t has bit n = 1 => s is inside t1 *) else (* prefix disagree *) join p s q t (* -------------------------------------------------------------------------- *) (* --- Merge --- *) (* -------------------------------------------------------------------------- *) let map1 phi s = mapf (fun i x -> phi i (Some x) None) s let map2 phi t = mapf (fun j y -> phi j None (Some y)) t let rec merge phi s t = match s , t with | Empty , _ -> map2 phi t | _ , Empty -> map1 phi s | Lf(i,x) , Lf(j,y) -> if i = j then lf i (phi i (Some x) (Some y)) else let a = lf i (phi i (Some x) None) in let b = lf j (phi j None (Some y)) in glue a b | Lf(i,x) , Br(q,t0,t1) -> if match_prefix i q then (* leaf i is in tree t *) if zero_bit i q then glue (merge phi s t0) (map2 phi t1) (* s=i is in t0 *) else glue (map2 phi t0) (merge phi s t1) (* s=i is in t1 *) else (* leaf i does not appear in t *) glue (lf i (phi i (Some x) None)) (map2 phi t) | Br(p,s0,s1) , Lf(j,y) -> if match_prefix j p then (* leaf j is in tree s *) if zero_bit j p then glue (merge phi s0 t) (map1 phi s1) (* t=j is in s0 *) else glue (map1 phi s0) (merge phi s1 t) (* t=j is in s1 *) else (* leaf j does not appear in s *) glue (map1 phi s) (lf j (phi j None (Some y))) | Br(p,s0,s1) , Br(q,t0,t1) -> if p == q then (* prefixes agree *) glue (merge phi s0 t0) (merge phi s1 t1) else if included_prefix p q then (* q contains p. Merge t with a subtree of s *) if zero_bit q p then (* t has bit m = 0 => t is inside s0 *) glue (merge phi s0 t) (map1 phi s1) else (* t has bit m = 1 => t is inside s1 *) glue (map1 phi s0) (merge phi s1 t) else if included_prefix q p then (* p contains q. Merge s with a subtree of t *) if zero_bit p q then (* s has bit n = 0 => s is inside t0 *) glue (merge phi s t0) (map2 phi t1) else (* s has bit n = 1 => s is inside t1 *) glue (map2 phi t0) (merge phi s t1) else glue (map1 phi s) (map2 phi t) (* good sharing with s *) let rec diffq phi s t = match s , t with | Empty , _ -> s | _ , Empty -> s | Lf(i,x) , Lf(j,y) -> if i = j then lfq phi i x y s t else s | Lf(i,x) , Br _ -> (match occur i t with None -> s | Some y -> lfq phi i x y s t) | Br _ , Lf(j,y) -> change (fun j y x -> match x with None -> None | Some x -> phi j x y) j y s | Br(p,s0,s1) , Br(q,t0,t1) -> if p == q then (* prefixes agree *) let t0' = (diffq phi s0 t0) in let t1' = (diffq phi s1 t1) in glue01 t0' t1' s0 s1 s else if included_prefix p q then (* q contains p. *) if zero_bit q p then (* t has bit m = 0 => t is inside s0 *) let s0' = (diffq phi s0 t) in glue0 s0' s0 s1 s else (* t has bit m = 1 => t is inside s1 *) let s1' = (diffq phi s1 t) in glue1 s1' s0 s1 s else if included_prefix q p then (* p contains q. *) if zero_bit p q then diffq phi s t0 (* s has bit n = 0 => s is inside t0 *) else diffq phi s t1 (* t has bit n = 1 => s is inside t1 *) else (* prefix disagree *) s (* -------------------------------------------------------------------------- *) (* --- Iter Kernel --- *) (* -------------------------------------------------------------------------- *) let rec iterk phi s t = match s , t with | Empty , _ | _ , Empty -> () | Lf(i,x) , Lf(j,y) -> if i = j then phi i x y | Lf(i,x) , Br _ -> (match occur i t with None -> () | Some y -> phi i x y) | Br _ , Lf(j,y) -> (match occur j s with None -> () | Some x -> phi j x y) | Br(p,s0,s1) , Br(q,t0,t1) -> if p == q then (* prefixes agree *) (iterk phi s0 t0 ; iterk phi s1 t1) else if included_prefix p q then (* q contains p. Intersect t with a subtree of s *) if zero_bit q p then iterk phi s0 t (* t has bit m = 0 => t is inside s0 *) else iterk phi s1 t (* t has bit m = 1 => t is inside s1 *) else if included_prefix q p then (* p contains q. Intersect s with a subtree of t *) if zero_bit p q then iterk phi s t0 (* s has bit n = 0 => s is inside t0 *) else iterk phi s t1 (* t has bit n = 1 => s is inside t1 *) else (* prefix disagree *) () (* -------------------------------------------------------------------------- *) (* --- Iter2 --- *) (* -------------------------------------------------------------------------- *) let iter21 phi s = iteri (fun i x -> phi i (Some x) None) s let iter22 phi t = iteri (fun j y -> phi j None (Some y)) t let rec iter2 phi s t = match s , t with | Empty , _ -> iter22 phi t | _ , Empty -> iter21 phi s | Lf(i,x) , Lf(j,y) -> if i = j then phi i (Some x) (Some y) else ( phi i (Some x) None ; phi j None (Some y) ) | Lf(i,x) , Br(q,t0,t1) -> if match_prefix i q then (* leaf i is in tree t *) if zero_bit i q then (iter2 phi s t0 ; iter22 phi t1) (* s=i is in t0 *) else (iter22 phi t0 ; iter2 phi s t1) (* s=i is in t1 *) else (* leaf i does not appear in t *) (phi i (Some x) None ; iter22 phi t) | Br(p,s0,s1) , Lf(j,y) -> if match_prefix j p then (* leaf j is in tree s *) if zero_bit j p then (iter2 phi s0 t ; iter21 phi s1) (* t=j is in s0 *) else (iter21 phi s0 ; iter2 phi s1 t) (* t=j is in s1 *) else (* leaf j does not appear in s *) (iter21 phi s ; phi j None (Some y)) | Br(p,s0,s1) , Br(q,t0,t1) -> if p == q then (* prefixes agree *) (iter2 phi s0 t0 ; iter2 phi s1 t1) else if included_prefix p q then (* q contains p. Merge t with a subtree of s *) if zero_bit q p then (* t has bit m = 0 => t is inside s0 *) (iter2 phi s0 t ; iter21 phi s1) else (* t has bit m = 1 => t is inside s1 *) (iter21 phi s0 ; iter2 phi s1 t) else if included_prefix q p then (* p contains q. Merge s with a subtree of t *) if zero_bit p q then (* s has bit n = 0 => s is inside t0 *) (iter2 phi s t0 ; iter22 phi t1) else (* s has bit n = 1 => s is inside t1 *) (iter22 phi t0 ; iter2 phi s t1) else (iter21 phi s ; iter22 phi t) (* -------------------------------------------------------------------------- *) (* --- Intersects --- *) (* -------------------------------------------------------------------------- *) let rec intersectf phi s t = match s , t with | Empty , _ -> false | _ , Empty -> false | Lf(i,x) , Lf(j,y) -> if i = j then phi i x y else false | Lf(i,x) , Br _ -> (match occur i t with None -> false | Some y -> phi i x y) | Br _ , Lf(j,y) -> (match occur j s with None -> false | Some x -> phi j x y) | Br(p,s0,s1) , Br(q,t0,t1) -> if p == q then (* prefixes agree *) (intersectf phi s0 t0) || (intersectf phi s1 t1) else if included_prefix p q then (* q contains p. Intersect t with a subtree of s *) if zero_bit q p then intersectf phi s0 t (* t has bit m = 0 => t is inside s0 *) else intersectf phi s1 t (* t has bit m = 1 => t is inside s1 *) else if included_prefix q p then (* p contains q. Intersect s with a subtree of t *) if zero_bit p q then intersectf phi s t0 (* s has bit n = 0 => s is inside t0 *) else intersectf phi s t1 (* t has bit n = 1 => s is inside t1 *) else (* prefix disagree *) false let intersect s t = intersectf (fun _i _x _y -> true) s t (* -------------------------------------------------------------------------- *) (* --- Subset --- *) (* -------------------------------------------------------------------------- *) let rec subsetf phi s t = match s , t with | Empty , _ -> true | _ , Empty -> false | Lf(i,x) , Lf(j,y) -> if i = j then phi i x y else false | Lf(i,x) , Br _ -> (match occur i t with None -> false | Some y -> phi i x y) | Br _ , Lf _ -> false | Br(p,s0,s1) , Br(q,t0,t1) -> if p == q then (* prefixes agree *) (subsetf phi s0 t0 && subsetf phi s1 t1) else if included_prefix p q then (* q contains p: t is included in a (strict) subtree of s *) false else if included_prefix q p then (* p contains q: s is included in a subtree of t *) if zero_bit p q then subsetf phi s t0 (* s has bit n = 0 => s is inside t0 *) else subsetf phi s t1 (* t has bit n = 1 => s is inside t1 *) else (* prefix disagree *) false let subset = subsetf let subsetk s t = subsetf (fun _i _x _y -> true) s t (* -------------------------------------------------------------------------- *)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>