package frama-c
Platform dedicated to the analysis of source code written in C
Install
Dune Dependency
Authors
-
MMichele Alberti
-
TThibaud Antignac
-
GGergö Barany
-
PPatrick Baudin
-
NNicolas Bellec
-
TThibaut Benjamin
-
AAllan Blanchard
-
LLionel Blatter
-
FFrançois Bobot
-
RRichard Bonichon
-
VVincent Botbol
-
QQuentin Bouillaguet
-
DDavid Bühler
-
ZZakaria Chihani
-
LLoïc Correnson
-
JJulien Crétin
-
PPascal Cuoq
-
ZZaynah Dargaye
-
BBasile Desloges
-
JJean-Christophe Filliâtre
-
PPhilippe Herrmann
-
MMaxime Jacquemin
-
FFlorent Kirchner
-
AAlexander Kogtenkov
-
RRemi Lazarini
-
TTristan Le Gall
-
JJean-Christophe Léchenet
-
MMatthieu Lemerre
-
DDara Ly
-
DDavid Maison
-
CClaude Marché
-
AAndré Maroneze
-
TThibault Martin
-
FFonenantsoa Maurica
-
MMelody Méaulle
-
BBenjamin Monate
-
YYannick Moy
-
PPierre Nigron
-
AAnne Pacalet
-
VValentin Perrelle
-
GGuillaume Petiot
-
DDario Pinto
-
VVirgile Prevosto
-
AArmand Puccetti
-
FFélix Ridoux
-
VVirgile Robles
-
JJan Rochel
-
MMuriel Roger
-
JJulien Signoles
-
NNicolas Stouls
-
KKostyantyn Vorobyov
-
BBoris Yakobowski
Maintainers
Sources
frama-c-29.0-Copper.tar.gz
sha256=d2fbb3b8d0ff83945872e9e6fa258e934a706360e698dae3b4d5f971addf7493
doc/src/frama-c-scope.core/datascope.ml.html
Source file datascope.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
(**************************************************************************) (* *) (* This file is part of Frama-C. *) (* *) (* Copyright (C) 2007-2024 *) (* CEA (Commissariat à l'énergie atomique et aux énergies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) (** The aim here is to select the statements where a data D * has the same value then a given starting program point L. *) open Cil_types let name = "scope" module R = Plugin.Register (struct let name = name let shortname = name let help = "data dependencies higher level functions" end) let cat_rm_asserts = R.register_category "rm_asserts" let () = R.add_debug_keys cat_rm_asserts (** {2 Computing a mapping between zones and modifying statements} We first go through all the function statements in other to build a mapping between each zone and the statements that are modifying it. **) (** Statement identifier *) module StmtDefault = struct include Cil_datatype.Stmt let id s = s.sid end (** set of values to store for each data *) module StmtSetLattice = struct include Abstract_interp.Make_Hashconsed_Lattice_Set(StmtDefault)(Cil_datatype.Stmt.Hptset) let default: t = empty let single s = inject_singleton s end (** A place to map each data to the state of statements that modify it. *) module InitSid = struct module LM = Lmap_bitwise.Make_bitwise (StmtSetLattice) (* Clear the (non-project compliant) internal caches each time the ast changes, which includes every time we switch project. *) let () = Ast.add_hook_on_update LM.clear_caches let empty = LM.empty let find = LM.find let add_zone lmap zone sid = let new_val = StmtSetLattice.single sid in LM.add_binding ~exact:false lmap zone new_val let pretty fmt lmap = Format.fprintf fmt "Lmap = %a@\n" LM.pretty lmap end let get_writes stmt lval = Eva.Results.(before stmt |> eval_address ~for_writing:true lval |> as_zone) (** Add to [stmt] to [lmap] for all the locations modified by the statement. * Something to do only for calls and assignments. * *) let register_modified_zones lmap stmt = let register lmap zone = InitSid.add_zone lmap zone stmt in let aux_out out kf = let inout= Inout.get_precise_inout ~stmt kf in Locations.Zone.join out inout.Inout_type.over_outputs in match stmt.skind with | Instr (Set (lval, _, _)) -> let zone = get_writes stmt lval in register lmap zone | Instr (Local_init(v, i, _)) -> let zone = get_writes stmt (Cil.var v) in let lmap_init = register lmap zone in (match i with | AssignInit _ -> lmap_init | ConsInit(f,_,_) -> let kf = Globals.Functions.get f in let out = aux_out Locations.Zone.bottom kf in register lmap_init out) | Instr (Call (dst,funcexp,_args,_)) -> begin let lmap = match dst with | None -> lmap | Some lval -> let zone = get_writes stmt lval in register lmap zone in let kfs = Eva.Results.(before stmt |> eval_callee funcexp |> default []) in let out = List.fold_left aux_out Locations.Zone.bottom kfs in register lmap out end | _ -> lmap (** compute the mapping for the function * @raise Kernel_function.No_Definition if [kf] has no definition *) let compute kf = let open Current_loc.Operators in R.debug ~level:1 "computing for function %a" Kernel_function.pretty kf; let f = Kernel_function.get_definition kf in let do_stmt lmap s = let<> UpdatedCurrentLoc = Cil_datatype.Stmt.loc s in if Eva.Results.is_reachable s then register_modified_zones lmap s else lmap in let f_datas = List.fold_left do_stmt InitSid.empty f.sallstmts in R.debug ~level:2 "data init stmts : %a" InitSid.pretty f_datas; f.sallstmts, f_datas (* TODO : store it ! *) (** {2 Computing Scopes} *) module State = struct (* The algorithm starts by defining the "modified" function, that tells for each statement if it changes the lvalue under consideration. We want to add a "temporal" information on top of modified, i.e. we want to know for each statement s', whether for each path from the starting statement s to s', the lvalue has been modified. To make this computable, we overapproximate, and the dataflow computes if the statement may have been modified (Modif) or has not been modified in any case (SameVal). The simple boolean lattice with Modif and SameVal does not suffice: if we initialized the dataflow with "SameVal" for all statements, "join_and_is_included" would return true and the dataflow could stop before having visited all statements. This explains why a value of Bottom is needed, to distinguish statements not yet visited (or unreachable) from the others. Now another problem in the dataflow is the representation of loop. In a program such has: while(1) { s1; s2; s3; s4; } Where "modified" is false except for s4. We start the forward dataflow on s2. We would compute that s2 is not modified, then s3 is not modified, then s4 is modified, then s1 is modified... but then we would compute that s3 and s4 are modified (and indeed, they are in further iterations of the loop). To cope with this problem, s2 is initialized to the Start state. The Start state is not propagated (transfer Start = SameVal), and cannot be removed from s2 (Start = Top). Thus the Hasse diagram of the lattice is simply: : Start = Top : | : Modif : | : SameVal : | : NotSeen = Bottom *) type t = Start | NotSeen | Modif | SameVal let pretty fmt b = Format.fprintf fmt "%s" (match b with | Start -> "Start" | NotSeen -> "NotSeen" | Modif -> "Modif" | SameVal -> "SameVal") let bottom = NotSeen (* Just compute the "max" between elements of the lattice. *) let merge b1 b2 = let b = match b1, b2 with | Start, _ | _, Start -> Start | NotSeen, b | b, NotSeen -> b | Modif, _ | _, Modif -> Modif | SameVal, SameVal -> SameVal in b let join = merge;; let equal (b1 : t) (b2: t) = (b1 = b2) let join_and_is_included a b = let j = join a b in (j, equal j b) let is_included a b = snd (join_and_is_included a b) (* Note: the transfer function "if m = Start then SameVal else if modif then Modif else m" suits better visualisation by scope, since it does not consider the "current statement" as "modifying". But this gives incorrect results for remove-redundant-alarms. *) let transfer modif m = if modif then Modif else if m = Start then SameVal else m end module BackwardScope (X : sig val modified : stmt -> bool end ) = struct let transfer_stmt stmt state = match stmt.skind with | Instr _ -> State.transfer (X.modified stmt) state | _ -> state include State end let backward_data_scope modif_stmts s kf = let modified s = StmtSetLattice.mem s modif_stmts in let module Fenv = (val Dataflows.function_env kf: Dataflows.FUNCTION_ENV) in let module Arg = struct include BackwardScope(struct let modified = modified end) let init = [(s,State.Start)];; end in let module Compute = Dataflows.Simple_backward(Fenv)(Arg) in Compute.pre_state ;; module ForwardScope (X : sig (* Effects of the statement itself *) val modified : stmt -> bool (* Effects of scope change *) val modified_by_edge: stmt -> stmt -> bool end) = struct include State;; let transfer_stmt s state = let map_on_all_succs new_state = let do_succ s' = (s', State.transfer (X.modified_by_edge s s') new_state) in List.map do_succ s.succs in match s.skind with | Instr _ -> map_on_all_succs (State.transfer (X.modified s) state) | If _ | Switch _ -> map_on_all_succs (State.transfer false state) | Return _ | Throw _ -> [] | UnspecifiedSequence _ | Loop _ | Block _ | Goto _ | Break _ | Continue _ | TryExcept _ | TryFinally _ | TryCatch _ -> map_on_all_succs state ;; end let forward_data_scope modif_stmts modif_edge s kf = let modified s = StmtSetLattice.mem s modif_stmts in let module Fenv = (val Dataflows.function_env kf: Dataflows.FUNCTION_ENV) in let module Arg = struct include ForwardScope(struct let modified = modified let modified_by_edge = modif_edge end) let init = [(s,State.Start)];; end in let module Compute = Dataflows.Simple_forward(Fenv)(Arg) in Compute.pre_state, Compute.post_state ;; (* Add only 'simple' statements. *) let add_s s acc = match s.skind with | Instr _ | Return _ | Continue _ | Break _ | Goto _ | Throw _ -> Cil_datatype.Stmt.Hptset.add s acc | Block _ | Switch _ | If _ | UnspecifiedSequence _ | Loop _ | TryExcept _ | TryFinally _ | TryCatch _ -> acc (** Do backward and then forward propagations and compute the 3 statement sets : * - forward only, * - forward and backward, * - backward only. *) let find_scope allstmts modif_stmts modif_edge s kf = (* Add only statements for which the lvalue certainly did not change. *) let add get_state acc s = match get_state s with | State.Start | State.SameVal -> add_s s acc | _ -> acc in let _, fw_post = forward_data_scope modif_stmts modif_edge s kf in let fw = List.fold_left (add fw_post) Cil_datatype.Stmt.Hptset.empty allstmts in let bw_pre = backward_data_scope modif_stmts s kf in let bw = List.fold_left (add bw_pre) Cil_datatype.Stmt.Hptset.empty allstmts in let fb = Cil_datatype.Stmt.Hptset.inter bw fw in let fw = Cil_datatype.Stmt.Hptset.diff fw fb in let bw = Cil_datatype.Stmt.Hptset.diff bw fb in fw, fb, bw (* Computes the memory zones that points to a base in [escaping] in a state. *) let gather_escaping_zones escaping = function | Cvalue.Model.Top -> Locations.Zone.top | Cvalue.Model.Bottom -> Locations.Zone.bottom | Cvalue.Model.Map m -> let aux base offsm zone = let test b = Base.Hptset.mem b escaping in let gather (_, _ as itv) (v, _, _) acc = let v = Cvalue.V_Or_Uninitialized.get_v v in if Cvalue.V.contains_addresses_of_locals test v then let z = Locations.Zone.inject base (Int_Intervals.inject_itv itv) in Locations.Zone.join acc z else acc in Cvalue.V_Offsetmap.fold gather offsm zone in Cvalue.Model.fold aux m Locations.Zone.bottom (* compute the memory zones that are changed into ESCAPING ADDRESS when taking the cfg edge s1->s2 *) let compute_escaping_zones s1 s2 = let closed_blocks = Kernel_function.blocks_closed_by_edge s1 s2 in let locals = List.flatten (List.map (fun b -> b.blocals) closed_blocks) in let filter acc v = if v.vtemp || not v.vreferenced then acc else Base.Hptset.add (Base.of_varinfo v) acc in let bases = List.fold_left filter Base.Hptset.empty locals in if Base.Hptset.is_empty bases then Locations.Zone.bottom else let cvalue_state = Eva.Results.(before s1 |> get_cvalue_model) in gather_escaping_zones bases cvalue_state (* type pair_stmts = stmt * stmt *) module PairStmts = Datatype.Pair_with_collections (Cil_datatype.Stmt)(Cil_datatype.Stmt) (struct let module_name = "Scope.Datascope.PairStmts" end) (* Hashtbl from pairs of stmts to zone. Used as maps from Cfg edges to the memory zones that are 'modified' by thescope change. *) module HashPairStmtsZone = PairStmts.Hashtbl.Make(Locations.Zone) type modified_by_edge = HashPairStmtsZone.t (* compute the {!modified_by_edge} hashtbl for the fundec [fdec] *) let compute_modif_edge fdec : modified_by_edge = let modifs_edge = PairStmts.Hashtbl.create 17 in let do_stmt stmt = let do_succ stmt' = let z = compute_escaping_zones stmt stmt' in PairStmts.Hashtbl.add modifs_edge (stmt, stmt') z in List.iter do_succ stmt.succs in List.iter do_stmt fdec.sallstmts; modifs_edge module ModifEdge = Cil_state_builder.Kernel_function_hashtbl(HashPairStmtsZone) (struct let name = "Scope.Datatscope.ModifsEdge" let dependencies = [Eva.Analysis.self] let size = 16 end) let modified_by_edge_kf = ModifEdge.memo (fun kf -> compute_modif_edge (Kernel_function.get_definition kf)) (* Does the Cfg edge [s1->s2] has an effect on [z]? *) let is_modified_by_edge kf z s1 s2 = let modifs_edge = modified_by_edge_kf kf in Locations.Zone.intersects z (PairStmts.Hashtbl.find modifs_edge (s1, s2)) (** Try to find the statement set where [data] has the same value than * before [stmt]. * @raise Kernel_function.No_Definition if [kf] has no definition *) let get_data_scope_at_stmt kf stmt lval = let zone = Eva.Results.(before stmt |> lval_deps lval) in let allstmts, info = compute kf in let modif_stmts = InitSid.find info zone in let modifs_edge = is_modified_by_edge kf zone in let (f_scope, fb_scope, b_scope) = find_scope allstmts modif_stmts modifs_edge stmt kf in R.debug "@[<hv 4>get_data_scope_at_stmt %a at %d @\n\ modified by = %a@\n\ f = %a@\nfb = %a@\nb = %a@]" (* stmt at *) Locations.Zone.pretty zone stmt.sid (* modified by *) (Pretty_utils.pp_iter StmtSetLattice.iter ~sep:",@ " Cil_datatype.Stmt.pretty_sid) modif_stmts (* scope *) Cil_datatype.Stmt.Hptset.pretty f_scope Cil_datatype.Stmt.Hptset.pretty fb_scope Cil_datatype.Stmt.Hptset.pretty b_scope; (f_scope, (fb_scope, b_scope)) exception ToDo let get_annot_zone kf stmt annot = let add_zone z info = let s = info.Logic_deps.ki in let before = info.Logic_deps.before in let zone = info.Logic_deps.zone in R.debug ~level:2 "[forward_prop_scope] need %a %s stmt %d@." Locations.Zone.pretty zone (if before then "before" else "after") s.sid; if before && stmt.sid = s.sid then Locations.Zone.join zone z else (* TODO *) raise ToDo in let (info, _), _ = Logic_deps.from_stmt_annot annot (stmt, kf) in match info with | None -> raise ToDo | Some info -> let zone = List.fold_left add_zone Locations.Zone.bottom info in R.debug "[get_annot_zone] need %a" Locations.Zone.pretty zone ; zone module CA_Map = Cil_datatype.Code_annotation.Map type proven = (stmt * code_annotation * stmt) CA_Map.t (** Type of the properties proven so far. A binding [ca -> (stmt_ca, ca_because, stmt_because)] must be read as "[ca] at statement [stmt_ca] is a logical consequence of [ca_because] at statement [stmt_because]". Currently, [ca] and [ca_because] are always exactly the same ACSL assertion, although this may be extended in the future. *) (** Assertions proven so far, as a list *) let list_proven (m:proven) = CA_Map.fold (fun ca _ acc -> ca :: acc) m [] (** [add_proven_annot proven because] add the fact that [proven] is proven thanks to [because]. This function also returns a boolean indicating that [proven] was not already proven. *) let add_proven_annot (ca, stmt_ca) (ca_because, stmt_because) acc = if CA_Map.mem ca acc then (* already proven *) acc, false else CA_Map.add ca (stmt_ca, ca_because, stmt_because) acc, true (** Check if an assertion at [stmt] is identical to [ca] (itself emitted at [stmt_ca]). Add them to acc if any *) let check_stmt_annots (ca, stmt_ca) stmt acc = let check _ annot acc = match ca.annot_content, annot.annot_content with | AAssert (_, p'), AAssert (_, p) when p'.tp_kind <> Check && p.tp_kind <> Admit -> let p = p.tp_statement.pred_content in let p' = p'.tp_statement.pred_content in if Logic_utils.is_same_predicate_node p p' then let acc, added = add_proven_annot (annot, stmt) (ca, stmt_ca) acc in if added then R.debug "annot at stmt %d could be removed: %a" stmt.sid Printer.pp_code_annotation annot; acc else acc | _ -> acc in Annotations.fold_code_annot check stmt acc exception VolatileFound (* This visitor detects the presence of a volatile logic l-value. Such a l-value may evaluate differently at different program point. *) class containsVolatile = object inherit Visitor.frama_c_inplace method! vterm t = match t.term_node with | TLval tlv -> if Cil.isVolatileTermLval tlv then raise VolatileFound ; Cil.DoChildren | _ -> Cil.DoChildren end let code_annot_is_volatile ca = let vis = new containsVolatile in try ignore (Visitor.visitFramacCodeAnnotation vis ca); false with VolatileFound -> true (** Return the set of stmts ([scope]) where [annot] has the same value as at [stmt], and adds to [proven] the annotations that are identical to [annot] at statements that are both in [scope] and dominated by [stmt]. [stmt] is not added to the set, and [annot] is not added to [proven]. *) let get_prop_scope_at_stmt ~warn kf stmt ?(proven=CA_Map.empty) annot = R.debug "[get_prop_scope_at_stmt] at stmt %d in %a : %a" stmt.sid Kernel_function.pretty kf Printer.pp_code_annotation annot; let acc = (Cil_datatype.Stmt.Hptset.empty, proven) in if code_annot_is_volatile annot then acc else try let zone = get_annot_zone kf stmt annot in let allstmts, info = compute kf in let modif_stmts = InitSid.find info zone in let modifs_edge = is_modified_by_edge kf zone in let pre_state, _ = forward_data_scope modif_stmts modifs_edge stmt kf in begin match annot.annot_content with | AAssert _ -> () | _ -> R.abort "only 'assert' are handled by get_prop_scope_at_stmt" end; let add ((acc_scope, acc_to_be_rm) as acc) s = match pre_state s with | State.SameVal -> if Dominators.dominates stmt s && not (Cil_datatype.Stmt.equal stmt s) then let acc_scope = add_s s acc_scope in let acc_to_be_rm = check_stmt_annots (annot, stmt) s acc_to_be_rm in (acc_scope, acc_to_be_rm) else acc | _ -> acc in List.fold_left add acc allstmts with ToDo -> if warn then R.warning ~current:true ~once:true "[get_annot_zone] don't know how to compute zone: skip this annotation"; acc (** Collect the annotations that can be removed because they are redundant. *) class check_annot_visitor = object(self) inherit Visitor.frama_c_inplace val mutable proven = CA_Map.empty method proven () = proven method! vcode_annot annot = let kf = Option.get self#current_kf in let stmt = Visitor_behavior.Get_orig.stmt self#behavior (Option.get self#current_stmt) in begin match annot.annot_content with | AAssert _ -> R.debug ~level:2 "[check] annot %d at stmt %d in %a : %a@." annot.annot_id stmt.sid Kernel_function.pretty kf Printer.pp_code_annotation annot; let _scope, proven' = get_prop_scope_at_stmt ~warn:false kf stmt ~proven annot in proven <- proven' | _ -> () end; Cil.SkipChildren method! vglob_aux g = match g with | GFun _ when Eva.Results.are_available (Option.get self#current_kf) -> Cil.DoChildren | _ -> Cil.SkipChildren method! vexpr _ = Cil.SkipChildren end (* class check_annot_visitor *) let redundant_assertions () = let visitor = new check_annot_visitor in ignore (Visitor.visitFramacFile (visitor:>Visitor.frama_c_visitor) (Ast.get ())); visitor#proven () let check_asserts () = R.feedback "check if there are some redundant assertions..."; let to_be_removed = redundant_assertions () in let n = CA_Map.cardinal to_be_removed in R.result "[check_asserts] %d assertion(s) could be removed@." n; (list_proven to_be_removed) (* erasing optional arguments, plus return a list*) let get_prop_scope_at_stmt kf stmt annot = let s, m = get_prop_scope_at_stmt ~warn:true kf stmt annot in s, list_proven m (* Currently lazy, because we need to define it after Value has been registered in Db *) let emitter = lazy ( let conv = List.map Typed_parameter.get in let correctness = conv (Emitter.correctness_parameters Eva.Analysis.emitter) in let tuning = conv (Emitter.tuning_parameters Eva.Analysis.emitter) in Emitter.create "RedundantAlarms" [Emitter.Property_status] ~correctness ~tuning) (** Mark as proved the annotations collected by [check_asserts]. *) let rm_asserts () = let to_be_removed = redundant_assertions () in let n = CA_Map.cardinal to_be_removed in if n > 0 then begin R.feedback ~dkey:cat_rm_asserts "removing %d assertion(s)@." n; let aux ca (stmt_ca, ca_because, stmt_because) = let loc = Cil_datatype.Stmt.loc stmt_ca in R.result ~source:(fst loc) ~dkey:cat_rm_asserts ~level:2 "@[removing redundant@ %a@]" Printer.pp_code_annotation ca; let kf = Kernel_function.find_englobing_kf stmt_ca in let ip_ca = Property.ip_of_code_annot_single kf stmt_ca ca in let ip_because = Property.ip_of_code_annot_single kf stmt_because ca_because in let e = Lazy.force emitter in Property_status.emit e ~hyps:[ip_because] ip_ca Property_status.True in CA_Map.iter aux to_be_removed end let rm_asserts = Dynamic.register ~comment:"Remove redundant alarms. Used by the Eva plugin." ~plugin:name "rm_asserts" Datatype.(func unit unit) rm_asserts (* Local Variables: compile-command: "make -C ../../.." End: *)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>