package frama-c
Platform dedicated to the analysis of source code written in C
Install
Dune Dependency
Authors
-
MMichele Alberti
-
TThibaud Antignac
-
GGergö Barany
-
PPatrick Baudin
-
NNicolas Bellec
-
TThibaut Benjamin
-
AAllan Blanchard
-
LLionel Blatter
-
FFrançois Bobot
-
RRichard Bonichon
-
VVincent Botbol
-
QQuentin Bouillaguet
-
DDavid Bühler
-
ZZakaria Chihani
-
LLoïc Correnson
-
JJulien Crétin
-
PPascal Cuoq
-
ZZaynah Dargaye
-
BBasile Desloges
-
JJean-Christophe Filliâtre
-
PPhilippe Herrmann
-
MMaxime Jacquemin
-
FFlorent Kirchner
-
AAlexander Kogtenkov
-
RRemi Lazarini
-
TTristan Le Gall
-
JJean-Christophe Léchenet
-
MMatthieu Lemerre
-
DDara Ly
-
DDavid Maison
-
CClaude Marché
-
AAndré Maroneze
-
TThibault Martin
-
FFonenantsoa Maurica
-
MMelody Méaulle
-
BBenjamin Monate
-
YYannick Moy
-
PPierre Nigron
-
AAnne Pacalet
-
VValentin Perrelle
-
GGuillaume Petiot
-
DDario Pinto
-
VVirgile Prevosto
-
AArmand Puccetti
-
FFélix Ridoux
-
VVirgile Robles
-
JJan Rochel
-
MMuriel Roger
-
JJulien Signoles
-
NNicolas Stouls
-
KKostyantyn Vorobyov
-
BBoris Yakobowski
Maintainers
Sources
frama-c-29.0-Copper.tar.gz
sha256=d2fbb3b8d0ff83945872e9e6fa258e934a706360e698dae3b4d5f971addf7493
doc/src/frama-c-callgraph.core/cg.ml.html
Source file cg.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
(**************************************************************************) (* *) (* This file is part of Frama-C. *) (* *) (* Copyright (C) 2007-2024 *) (* CEA (Commissariat à l'énergie atomique et aux énergies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) open Cil_types (* Kernel functions with a custom function [compare] independent of vids. So the callgraph and its iterations are independent from the vids generator and is only dependent of the analyzed program itself. *) module Kf_sorted = struct type t = Kernel_function.t let equal = Kernel_function.equal let hash kf = Hashtbl.hash (Kernel_function.get_name kf) let compare kf1 kf2 = if kf1 == kf2 then 0 else let res = String.compare (Kernel_function.get_name kf1) (Kernel_function.get_name kf2) in if res <> 0 then res else (* Backup solution, will compare underlying varinfos ids *) Kernel_function.compare kf1 kf2 end module G = Graph.Imperative.Digraph.ConcreteBidirectionalLabeled (Kf_sorted) (struct include Cil_datatype.Stmt let default = Cil.dummyStmt end) module D = Datatype.Make(struct type t = G.t let name = "Callgraph.Cg" let reprs = [ G.create () ] include Datatype.Serializable_undefined let mem_project = Datatype.never_any_project end) (* State for the callgraph *) module State = State_builder.Option_ref (D) (struct let name = "Callgraph.Cg" let dependencies = [ Eva.Analysis.self; Globals.Functions.self ] end) module StateHook = Hook.Build (D) let self = State.self let is_computed () = State.is_computed () let add_hook = StateHook.extend (** @return the list of functions which address is taken.*) let get_pointed_kfs = (* memoized result *) let res = ref None in fun () -> let compute () = if Options.Function_pointers.get () then let l = ref [] in let o = object inherit Visitor.frama_c_inplace method !vexpr e = match e.enode with | AddrOf (Var vi, NoOffset) when Cil.isFunctionType vi.vtype -> (* function pointer *) let kf = try Globals.Functions.get vi with Not_found -> assert false in l := kf :: !l; Cil.SkipChildren | _ -> Cil.DoChildren end in Visitor.visitFramacFileSameGlobals o (Ast.get ()); !l else (* ignore function pointers when the option is off *) [] in match !res with | None -> let l = compute () in res := Some l; l | Some l -> l let is_entry_point kf = try let main, _ = Globals.entry_point () in Kernel_function.equal kf main with Globals.No_such_entry_point _ -> false (* complexity = O(number of statements); approximate function pointers to the set of functions which address is taken *) let syntactic_compute g = let o = object (self) inherit Visitor.frama_c_inplace (* add only-declared functions into the graph *) method !vvdec vi = try let kf = Globals.Functions.get vi in if Kernel_function.is_definition kf then Cil.DoChildren else begin G.add_vertex g kf; Cil.SkipChildren end with Not_found -> Cil.SkipChildren (* add defined functions into the graph *) method !vfunc _f = G.add_vertex g (Option.get self#current_kf); Cil.DoChildren (* add edges from callers to callees into the graph *) method !vinst = function | Call(_, { enode = Lval(Var vi, NoOffset) }, _, _) -> (* direct function call *) let callee = try Globals.Functions.get vi with Not_found -> assert false in let caller = Option.get self#current_kf in G.add_edge_e g (caller, Option.get self#current_stmt, callee); Cil.SkipChildren | Call _ -> (* call via a function pointer: add an edge from each function which the address is taken to this callee. *) let pointed = get_pointed_kfs () in let caller = Option.get self#current_kf in List.iter (fun callee -> G.add_edge_e g (caller, Option.get self#current_stmt, callee)) pointed; Cil.SkipChildren | Local_init (_,ConsInit(v,_,_),_) -> let callee = try Globals.Functions.get v with Not_found -> assert false in let caller = Option.get self#current_kf in G.add_edge_e g (caller, Option.get self#current_stmt, callee); Cil.SkipChildren | Local_init (_, AssignInit _, _) | Set _ | Skip _ | Asm _ | Code_annot _ -> (* skip children for efficiency *) Cil.SkipChildren (* for efficiency purpose, skip many items *) method !vexpr _ = Cil.SkipChildren method !vtype _ = Cil.SkipChildren method !vannotation _ = Cil.SkipChildren method !vcode_annot _ = Cil.SkipChildren method !vbehavior _ = Cil.SkipChildren end in Visitor.visitFramacFileSameGlobals o (Ast.get ()); (* now remove the potential irrelevant nodes wrt selected options *) if not (Options.Uncalled.get () && Options.Uncalled_leaf.get ()) then G.iter_vertex (fun kf -> let has_pred = try G.iter_pred (fun _ -> raise Exit) g kf; false with Exit -> true in if not (has_pred (* no caller *) || is_entry_point kf) then let must_kept = Options.Uncalled.get () (* uncalled functions must be kept *) && (Options.Uncalled_leaf.get () (* uncalled leaf must be kept *) || Kernel_function.is_definition kf (* [kf] is a leaf *)) in if not must_kept then G.remove_vertex g kf) g (* complexity = O(number of function calls); approximate function pointers as computed by [Value]. *) let semantic_compute g = Globals.Functions.iter (fun kf -> let callers = Eva.Results.callsites kf in let must_add = callers <> [] (* the function is called *) || is_entry_point kf || (Options.Uncalled.get () (* uncalled functions must be added *) && (Options.Uncalled_leaf.get () (* uncalled leaf must be added *) || Kernel_function.is_definition kf) (* [kf] is not a leaf *)) in if must_add then begin G.add_vertex g kf; List.iter (fun (caller, callsites) -> List.iter (fun stmt -> G.add_edge_e g (caller, stmt, kf)) callsites) callers end) let compute () = let g = G.create () in (* optimize with [Value] when either it is already computed or someone requires it anyway *) if Dynamic.Parameter.Bool.get "-eva" () then begin Eva.Analysis.compute (); semantic_compute g end else (if Eva.Analysis.is_computed () then semantic_compute else syntactic_compute) g; State.mark_as_computed (); StateHook.apply g; g let get () = State.memo compute let compute () = ignore (compute ()) module Graphviz_attributes = struct include G (* We rewrite [iter_edges_e] so that multiple calls to the same function from the same caller do not give rise to multi-edges. *) let iter_edges_e iter g = let aux_e v = (* This comparison function ignores the statement (as we want to coalesce all call sites together). The first element of the triple is always [v], so it can also be ignored. *) let comp_e (_, _, kf1) (_, _, kf2) = Kf_sorted.compare kf1 kf2 in let uniq_e = List.sort_uniq comp_e (G.succ_e g v) in List.iter iter uniq_e in G.iter_vertex aux_e g let graph_attributes _ = [ `Ratio (`Float 0.5) ] let vertex_name = Kernel_function.get_name let vertex_attributes kf = [ `Style (if Kernel_function.is_definition kf then `Bold else `Dotted) ] let edge_attributes _ = [] let default_vertex_attributes _ = [] let default_edge_attributes _ = [] let get_subgraph _ = None end module Subgraph = Subgraph.Make (G) (D) (struct let self = State.self let name = State.name let get = get let vertex kf = kf end) let dump () = let module GV = Graph.Graphviz.Dot(Graphviz_attributes) in let g = Subgraph.get () in Options.dump GV.output_graph g (* Local Variables: compile-command: "make -C ../../.." End: *)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>