package frama-c
Install
Dune Dependency
Authors
-
MMichele Alberti
-
TThibaud Antignac
-
GGergö Barany
-
PPatrick Baudin
-
NNicolas Bellec
-
TThibaut Benjamin
-
AAllan Blanchard
-
LLionel Blatter
-
FFrançois Bobot
-
RRichard Bonichon
-
VVincent Botbol
-
QQuentin Bouillaguet
-
DDavid Bühler
-
ZZakaria Chihani
-
LLoïc Correnson
-
JJulien Crétin
-
PPascal Cuoq
-
ZZaynah Dargaye
-
BBasile Desloges
-
JJean-Christophe Filliâtre
-
PPhilippe Herrmann
-
MMaxime Jacquemin
-
FFlorent Kirchner
-
AAlexander Kogtenkov
-
RRemi Lazarini
-
TTristan Le Gall
-
JJean-Christophe Léchenet
-
MMatthieu Lemerre
-
DDara Ly
-
DDavid Maison
-
CClaude Marché
-
AAndré Maroneze
-
TThibault Martin
-
FFonenantsoa Maurica
-
MMelody Méaulle
-
BBenjamin Monate
-
YYannick Moy
-
PPierre Nigron
-
AAnne Pacalet
-
VValentin Perrelle
-
GGuillaume Petiot
-
DDario Pinto
-
VVirgile Prevosto
-
AArmand Puccetti
-
FFélix Ridoux
-
VVirgile Robles
-
JJan Rochel
-
MMuriel Roger
-
JJulien Signoles
-
NNicolas Stouls
-
KKostyantyn Vorobyov
-
BBoris Yakobowski
Maintainers
Sources
sha256=d2fbb3b8d0ff83945872e9e6fa258e934a706360e698dae3b4d5f971addf7493
doc/frama-c.kernel/Frama_c_kernel/Wto/index.html
Module Frama_c_kernel.Wto
Weak topological orderings (WTOs) are a hierarchical decomposition of the a graph where each layer is topologically ordered and strongly connected components are aggregated and ordered recursively. This is a very convenient representation to describe an evaluation order to reach a fixpoint.
type 'n component =
| Component of 'n * 'n partition
(*A strongly connected component, described by its head node and the remaining sub-components topologically ordered
*)| Node of 'n
(*A single node without self loop
*)
Each component of the graph is either an individual node of the graph (without) self loop, or a strongly connected component where a node is designed as the head of the component and the remaining nodes are given by a list of components topologically ordered.
and 'n partition = 'n component list
A list of strongly connected components, sorted topologically
val head : 'n partition -> 'n option
Return the first node of a partition or None if the partition is empty
val flatten : 'n partition -> 'n list
Transform the partition into a list
val fold_heads : ('a -> 'n -> 'a) -> 'a -> 'n partition -> 'a