package dune-rpc
Communicate with dune using rpc
Install
Dune Dependency
Authors
Maintainers
Sources
dune-3.18.2.tbz
sha256=56be509ffc3c5ba652113d9e6b43edb04a691f1e1f6cbba17b9d243b1239a7af
sha512=ee04a0c4ab946817018c78cd9b19c8d3082ee3b1cef78c699fff4ea37fd79543823a9751d0b945d2fd1783396ceded045cbec986a85f7a8f7bac93e04650fff3
doc/src/dune-rpc.private/conv.ml.html
Source file conv.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
open Import (* Mini clone of Dune_lang.Decoder. Main advantage is that it forbids all the crazy stuff and is automatically bi-directional *) (* TODO error handling is complete crap for now. This should be unified with [Dune_lang.Decoder] eventually. *) type error = | Parse_error of { message : string ; payload : (string * Sexp.t) list } | Version_error of { since : int * int ; until : (int * int) option ; message : string ; payload : (string * Sexp.t) list } let dyn_of_error = let open Dyn in function | Version_error { message; payload; until; since } -> record [ "message", string message ; "payload", list (pair string Sexp.to_dyn) payload ; "until", option (pair int int) until ; "since", (pair int int) since ] | Parse_error { message; payload } -> record [ "message", string message; "payload", list (pair string Sexp.to_dyn) payload ] ;; exception Of_sexp of error let raise_of_sexp ?(payload = []) message = raise (Of_sexp (Parse_error { message; payload })) ;; let raise_version_error ?until ?(payload = []) ~since message = raise (Of_sexp (Version_error { since; until; message; payload })) ;; let () = Printexc.register_printer (function | Of_sexp (Parse_error { message; payload }) -> Some (message ^ " " ^ Sexp.to_string (Sexp.record payload)) | _ -> None) ;; module Fields = struct type t = Unparsed of Sexp.t String.Map.t let check_empty (Unparsed s) = if not (String.Map.is_empty s) then ( let payload = [ ( "unparsed" , Sexp.List (String.Map.to_list s |> List.map ~f:(fun (k, v) -> Sexp.List [ Sexp.Atom k; v ])) ) ] in raise_of_sexp ~payload "unexpected fields") ;; let empty = Unparsed String.Map.empty let merge (Unparsed a) (Unparsed b) = Unparsed (String.Map.union a b ~f:(fun _ _ _ -> (* field names are guaranteed to be different at construction time in [Both] *) assert false)) ;; let of_field name sexp = Unparsed (String.Map.singleton name sexp) let of_sexp (x : Sexp.t) = match x with | Atom _ -> raise_of_sexp "Unexpected atom" | List x -> (match String.Map.of_list_map x ~f:(function | List [ Atom s; v ] -> s, v | _ -> raise_of_sexp "unable to read field") with | Error (s, _, _) -> raise_of_sexp "duplicate fields" ~payload:[ "field", Atom s ] | Ok s -> Unparsed s) ;; let optional (Unparsed t) name = match String.Map.find t name with | None -> None, Unparsed t | Some v -> Some v, Unparsed (String.Map.remove t name) ;; let required t name = let r, t = optional t name in match r with | Some s -> s, t | None -> raise_of_sexp "missing required field" ~payload:[ "name", Atom name ] ;; let to_sexp (Unparsed t) : Sexp.t = List (String.Map.to_list t |> List.map ~f:(fun (k, v) -> Sexp.List [ Atom k; v ])) ;; end type values = Sexp.t type fields = Fields.t type version = { since : int * int ; until : (int * int) option } type ('a, 'kind) t = | String : (string, values) t | Int : (int, values) t | Float : (float, values) t | Unit : (unit, values) t | Char : (char, values) t | Iso : ('a, 'kind) t * ('a -> 'b) * ('b -> 'a) -> ('b, 'kind) t | Iso_result : ('a, 'kind) t * ('a -> ('b, exn) result) * ('b -> 'a) -> ('b, 'kind) t | Version : ('a, 'kind) t * version -> ('a, 'kind) t | Both : (* Invariant: field names must be different *) ('a, fields) t * ('b, fields) t -> ('a * 'b, fields) t | Sexp : (Sexp.t, values) t | List : ('a, values) t -> ('a list, values) t | Field : string * 'a field -> ('a, fields) t | Enum : (string * 'a) list -> ('a, values) t | Sum : 'a econstr list * ('a -> case) -> ('a, values) t | Pair : ('a, values) t * ('b, values) t -> ('a * 'b, values) t | Triple : ('a, values) t * ('b, values) t * ('c, values) t -> ('a * 'b * 'c, values) t | Fdecl : int * ('a, 'k) t Fdecl.t -> ('a, 'k) t | Either : (* Invariant: field names must be different *) ('a, fields) t * ('b, fields) t -> (('a, 'b) Either.t, fields) t | Record : ('a, fields) t -> ('a, values) t and ('a, 'arg) constr = { (* TODO allow constructors without an argument *) name : string ; arg : ('arg, values) t ; inj : 'arg -> 'a } and 'a econstr = Constr : ('a, 'arg) constr -> 'a econstr and case = Case : 'arg * ('a, 'arg) constr -> case and 'a field = | Required : ('a, values) t -> 'a field | Optional : ('a, values) t -> 'a option field and 'k ret = | Values : values ret | Fields : Fields.t -> fields ret type 'a value = ('a, values) t let case a c = Case (a, c) let constr name arg inj = { name; arg; inj } let econstr c = Constr c let both x y = Both (x, y) let list x = List x let sum x y = Sum (x, y) let pair x y = Pair (x, y) let triple x y z = Triple (x, y, z) let discard_values ((a, x) : _ * values ret) = match (x : values ret) with | Values -> a ;; let string = String let int = Int let float = Float let unit = Unit let option x = let none = constr "None" unit (fun () -> None) in let some = constr "Some" x (fun x -> Some x) in sum [ econstr none; econstr some ] (function | None -> case () none | Some s -> case s some) ;; let char = Char let sexp_for_digest t = let rec iter : type a b. int list -> (a, b) t -> Sexp.t = fun ids -> function | String -> Atom "String" | Int -> Atom "Int" | Float -> Atom "Float" | Unit -> Atom "Unit" | Char -> Atom "Char" | Iso (t, _, _) -> List [ Atom "Iso"; iter ids t ] | Iso_result (t, _, _) -> List [ Atom "Iso_result"; iter ids t ] | Version (t, { since = a, b; until }) -> let items : Sexp.t list = [ Atom "Version" ; iter ids t ; List [ Atom "since"; Atom (Int.to_string a); Atom (Int.to_string b) ] ] in let items = match until with | None -> items | Some (a, b) -> items @ [ List [ Atom "until"; Atom (Int.to_string a); Atom (Int.to_string b) ] ] in List items | Both (a, b) -> List [ Atom "Both"; iter ids a; iter ids b ] | Sexp -> Atom "Sexp" | List t -> List [ Atom "List"; iter ids t ] | Field (name, field) -> let field : Sexp.t = match field with | Required t -> List [ Atom "Required"; iter ids t ] | Optional t -> List [ Atom "Optional"; iter ids t ] in List [ Atom "Field"; Atom name; field ] | Enum cases -> List (Atom "Enum" :: List.map cases ~f:(fun (name, _) : Sexp.t -> Atom name)) | Sum (constrs, _) -> List (Atom "Sum" :: List.map constrs ~f:(fun (Constr { name; arg; inj = _ }) : Sexp.t -> List [ Atom name; iter ids arg ])) | Pair (a, b) -> List [ Atom "Pair"; iter ids a; iter ids b ] | Triple (a, b, c) -> List [ Atom "Triple"; iter ids a; iter ids b; iter ids c ] | Fdecl (id, fdecl) -> (* Although the id is represented as an auto-incrementing integer, we find De Bruijn indices to put in the digest so that equivalent structures produce the same digest. *) (match List.findi ids ~f:(Int.equal id) with | Some (_, index) -> List [ Atom "Recurse"; Atom (Int.to_string index) ] | None -> List [ Atom "Fixpoint"; iter (id :: ids) (Fdecl.get fdecl) ]) | Either (a, b) -> List [ Atom "Either"; iter ids a; iter ids b ] | Record t -> List [ Atom "Record"; iter ids t ] in iter [] t ;; let to_sexp : 'a. ('a, values) t -> 'a -> Sexp.t = fun t a -> let rec loop : type a k. (a, k) t -> a -> k = fun t a -> match t with | String -> Atom a | Int -> Atom (Int.to_string a) | Float -> Atom (Float.to_string a) | Unit -> List [] | Char -> Atom (String.make 1 a) | Sexp -> a | Version (t, _) -> loop t a | Fdecl (_, t) -> loop (Fdecl.get t) a | List t -> List (List.map a ~f:(loop t)) | Pair (x, y) -> let a, b = a in List [ loop x a; loop y b ] | Triple (x, y, z) -> let a, b, c = a in List [ loop x a; loop y b; loop z c ] | Record r -> let fields = loop r a in Fields.to_sexp fields | Field (name, spec) -> (match spec with | Required t -> Fields.of_field name (loop t a) | Optional t -> (match a with | None -> Fields.empty | Some a -> Fields.of_field name (loop t a))) | Iso_result (t, _, from) -> loop t (from a) | Iso (t, _, from) -> loop t (from a) | Both (x, y) -> let x = loop x (fst a) in let y = loop y (snd a) in Fields.merge x y | Either (x, y) -> (match a with | Left a -> loop x a | Right a -> loop y a) | Sum (_, constr) -> let (Case (a, constr)) = constr a in let arg = loop constr.arg a in Sexp.List [ Atom constr.name; arg ] | Enum choices -> (match List.find_map choices ~f:(fun (s, a') -> if Poly.equal a a' then Some s else None) with | Some v -> Atom v | None -> let open Dyn in Code_error.raise "enum does not include this value" [ "valid values", list (fun (x, _) -> string x) choices ]) in loop t a ;; let check_version ~version ~since ~until _ctx = if version < since || match until with | None -> false | Some until -> version > until then raise_version_error ?until ~since "invalid version" ;; let of_sexp : 'a. ('a, values) t -> version:int * int -> Sexp.t -> 'a = fun t ~version sexp -> let rec loop : type a k. (a, k) t -> k -> a * k ret = fun (type a k) (t : (a, k) t) (ctx : k) : (a * k ret) -> match t with | String -> (match ctx with | Atom s -> s, Values | List _ as list -> raise_of_sexp ~payload:[ "list", list ] "string: expected atom. received list") | Int -> (match ctx with | List _ as list -> raise_of_sexp ~payload:[ "list", list ] "int: expected atom. received list" | Atom s -> (match Int.of_string s with | None -> raise_of_sexp "unable to read int" | Some i -> i, Values)) | Float -> (match ctx with | List _ as list -> raise_of_sexp ~payload:[ "list", list ] "float: expected atom. received list" | Atom s -> (match Float.of_string_opt s with | None -> raise_of_sexp "unable to read float" | Some i -> i, Values)) | Unit -> (match ctx with | List [] -> (), Values | _ -> raise_of_sexp "expected empty list") | Char -> (match ctx with | Atom s -> if String.length s = 1 then s.[0], Values else raise_of_sexp "expected only a single character" | List _ -> raise_of_sexp "expected a string of length 1") | Sexp -> ctx, Values | Version (t, { since; until }) -> check_version ~version ~since ~until ctx; loop t ctx | Fdecl (_, t) -> loop (Fdecl.get t) ctx | List t -> (match ctx with | List xs -> List.map xs ~f:(fun x -> discard_values (loop t x)), Values | Atom _ -> raise_of_sexp "expected list") | Pair (x, y) -> (match ctx with | List [ a; b ] -> let a, Values = loop x a in let b, Values = loop y b in (a, b), Values | _ -> raise_of_sexp "expected field entry") | Triple (x, y, z) -> (match ctx with | List [ a; b; c ] -> let a, Values = loop x a in let b, Values = loop y b in let c, Values = loop z c in (a, b, c), Values | _ -> raise_of_sexp "expected field entry") | Record (r : (a, fields) t) -> let (fields : Fields.t) = Fields.of_sexp ctx in let a, Fields f = loop r fields in Fields.check_empty f; a, Values | Field (name, spec) -> (match spec with | Required v -> let field, rest = Fields.required ctx name in let t, Values = loop v field in t, Fields rest | Optional v -> let field, rest = Fields.optional ctx name in let t = match field with | None -> None | Some f -> let a, Values = loop v f in Some a in t, Fields rest) | Either (x, y) -> (try (* TODO share computation somehow *) let a, x = loop x ctx in Left a, x with | Of_sexp _ -> let a, y = loop y ctx in Right a, y) | Iso (t, f, _) -> let a, k = loop t ctx in f a, k | Iso_result (t, f, _) -> let a, k = loop t ctx in (match f a with | Error exn -> raise exn | Ok a -> a, k) | Both (x, y) -> let a, Fields k = loop x ctx in let b, k = loop y k in (a, b), k | Sum (constrs, _) -> (match ctx with | List [ Atom head; args ] -> (match List.find_map constrs ~f:(fun (Constr c) -> if head = c.name then Some (let a, k = loop c.arg args in c.inj a, k) else None) with | None -> raise_of_sexp "invalid constructor name" | Some p -> p) | _ -> raise_of_sexp "expected constructor") | Enum choices -> (match ctx with | List _ -> raise_of_sexp "expected list" | Atom a -> (match List.assoc choices a with | None -> raise_of_sexp "unable to read enum" | Some s -> s, Values)) in discard_values (loop t sexp) ;; let of_sexp conv ~version sexp = match of_sexp conv ~version sexp with | s -> Ok s | exception Of_sexp e -> Error e ;; let record r = Record r let either x y = Either (x, y) let iso a t f = Iso (a, t, f) let iso_result a t f = Iso_result (a, t, f) let version ?until t ~since = Version (t, { until; since }) let field name spec = Field (name, spec) let enum choices = Enum choices let three a b c = iso (Both (a, Both (b, c))) (fun (x, (y, z)) -> x, y, z) (fun (x, y, z) -> x, (y, z)) ;; let four a b c d = iso (both (both a b) (both c d)) (fun ((w, x), (y, z)) -> w, x, y, z) (fun (w, x, y, z) -> (w, x), (y, z)) ;; let five a b c d e = iso (both (both a b) (three c d e)) (fun ((a, b), (c, d, e)) -> a, b, c, d, e) (fun (a, b, c, d, e) -> (a, b), (c, d, e)) ;; let six a b c d e f = iso (both (three a b c) (three d e f)) (fun ((a, b, c), (d, e, f)) -> a, b, c, d, e, f) (fun (a, b, c, d, e, f) -> (a, b, c), (d, e, f)) ;; let seven a b c d e f g = iso (both (three a b c) (four d e f g)) (fun ((a, b, c), (d, e, f, g)) -> a, b, c, d, e, f, g) (fun (a, b, c, d, e, f, g) -> (a, b, c), (d, e, f, g)) ;; let eight a b c d e f g h = iso (both (four a b c d) (four e f g h)) (fun ((a, b, c, d), (e, f, g, h)) -> a, b, c, d, e, f, g, h) (fun (a, b, c, d, e, f, g, h) -> (a, b, c, d), (e, f, g, h)) ;; let sexp = Sexp let required x = Required x let optional x = Optional x let fdecl_id = ref 0 let fixpoint f = let fdecl = Fdecl.create Dyn.opaque in let id = !fdecl_id in incr fdecl_id; let result = Fdecl (id, fdecl) in Fdecl.set fdecl (f result); result ;; let error e = raise (Of_sexp e)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>