package dune-private-libs
Private libraries of Dune
Install
Dune Dependency
Authors
Maintainers
Sources
dune-3.19.1.tbz
sha256=a10386f980cda9417d1465466bed50dd2aef9c93b9d06a0f7feeedb0a1541158
sha512=d1622939713133a1f28617229896298d6ef194c48a47d011e4b752490fc83893cc920a8395d7ac60bc384a6c9b233ebf0665f38f74f2774a983e9d3b241a7746
doc/src/dune-private-libs.dune_re/core.ml.html
Source file core.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
(* RE - A regular expression library Copyright (C) 2001 Jerome Vouillon email: Jerome.Vouillon@pps.jussieu.fr This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, with linking exception; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA *) let rec iter n f v = if n = 0 then v else iter (n - 1) f (f v) (****) let unknown = -2 let break = -3 type match_info = | Match of Group.t | Failed | Running of { no_match_starts_before : int } type state = { idx : int; (* Index of the current position in the position table. Not yet computed transitions point to a dummy state where [idx] is set to [unknown]; If [idx] is set to [break] for states that either always succeed or always fail. *) real_idx : int; (* The real index, in case [idx] is set to [break] *) next : state array; (* Transition table, indexed by color *) mutable final : (Category.t * (Automata.idx * Automata.status)) list; (* Mapping from the category of the next character to - the index where the next position should be saved - possibly, the list of marks (and the corresponding indices) corresponding to the best match *) desc : Automata.State.t (* Description of this state of the automata *) } (* Automata (compiled regular expression) *) type re = { initial : Automata.expr; (* The whole regular expression *) mutable initial_states : (Category.t * state) list; (* Initial states, indexed by initial category *) colors : string; (* Color table *) color_repr : string; (* Table from colors to one character of this color *) ncolor : int; (* Number of colors. *) lnl : int; (* Color of the last newline. -1 if unnecessary *) tbl : Automata.working_area; (* Temporary table used to compute the first available index when computing a new state *) states : state Automata.State.Table.t; (* States of the deterministic automata *) group_names : (string * int) list; (* Named groups in the regular expression *) group_count : int (* Number of groups in the regular expression *) } let pp_re ch re = Automata.pp ch re.initial let print_re = pp_re let group_count re = re.group_count let group_names re = re.group_names (* Information used during matching *) type info = { re : re; (* The automata *) colors : string; (* Color table ([x.colors = x.re.colors]) Shortcut used for performance reasons *) mutable positions : int array; (* Array of mark positions The mark are off by one for performance reasons *) pos : int; (* Position where the match is started *) last : int (* Position where the match should stop *) } (****) let category re ~color = if color = -1 then Category.inexistant (* Special category for the last newline *) else if color = re.lnl then Category.(lastnewline ++ newline ++ not_letter) else Category.from_char (re.color_repr.[color]) (****) let dummy_next = [||] let unknown_state = { idx = unknown; real_idx = 0; next = dummy_next; final = []; desc = Automata.State.dummy } let mk_state ncol desc = let break_state = match Automata.status desc with | Automata.Running -> false | Automata.Failed | Automata.Match _ -> true in { idx = if break_state then break else desc.Automata.State.idx; real_idx = desc.Automata.State.idx; next = if break_state then dummy_next else Array.make ncol unknown_state; final = []; desc } let find_state re desc = try Automata.State.Table.find re.states desc with Not_found -> let st = mk_state re.ncolor desc in Automata.State.Table.add re.states desc st; st (**** Match with marks ****) let delta info cat ~color st = let desc = Automata.delta info.re.tbl cat color st.desc in let len = Array.length info.positions in if desc.Automata.State.idx = len && len > 0 then begin let pos = info.positions in info.positions <- Array.make (2 * len) 0; Array.blit pos 0 info.positions 0 len end; desc let validate info (s:string) ~pos st = let color = Char.code (info.colors.[Char.code s.[pos]]) in let cat = category info.re ~color in let desc' = delta info cat ~color st in let st' = find_state info.re desc' in st.next.(color) <- st' let rec loop info s ~pos st = if pos < info.last then let st' = st.next.(Char.code info.colors.[Char.code s.[pos]]) in let idx = st'.idx in if idx >= 0 then begin info.positions.(idx) <- pos; loop info s ~pos:(pos + 1) st' end else if idx = break then begin info.positions.(st'.real_idx) <- pos; st' end else begin (* Unknown *) validate info s ~pos st; loop info s ~pos st end else st let rec loop_no_mark info s ~pos ~last st = if pos < last then let st' = st.next.(Char.code info.colors.[Char.code s.[pos]]) in if st'.idx >= 0 then loop_no_mark info s ~pos:(pos + 1) ~last st' else if st'.idx = break then st' else begin (* Unknown *) validate info s ~pos st; loop_no_mark info s ~pos ~last st end else st let final info st cat = try List.assq cat st.final with Not_found -> let st' = delta info cat ~color:(-1) st in let res = (st'.Automata.State.idx, Automata.status st') in st.final <- (cat, res) :: st.final; res let find_initial_state re cat = try List.assq cat re.initial_states with Not_found -> let st = find_state re (Automata.State.create cat re.initial) in re.initial_states <- (cat, st) :: re.initial_states; st let get_color re (s:string) pos = if pos < 0 then -1 else let slen = String.length s in if pos >= slen then -1 else if pos = slen - 1 && re.lnl <> -1 && s.[pos] = '\n' then (* Special case for the last newline *) re.lnl else Char.code re.colors.[Char.code s.[pos]] let rec handle_last_newline info ~pos st ~groups = let st' = st.next.(info.re.lnl) in if st'.idx >= 0 then begin if groups then info.positions.(st'.idx) <- pos; st' end else if st'.idx = break then begin if groups then info.positions.(st'.real_idx) <- pos; st' end else begin (* Unknown *) let color = info.re.lnl in let real_c = Char.code info.colors.[Char.code '\n'] in let cat = category info.re ~color in let desc' = delta info cat ~color:real_c st in let st' = find_state info.re desc' in st.next.(color) <- st'; handle_last_newline info ~pos st ~groups end let rec scan_str info (s:string) initial_state ~groups = let pos = info.pos in let last = info.last in if (last = String.length s && info.re.lnl <> -1 && last > pos && String.get s (last - 1) = '\n') then begin let info = { info with last = last - 1 } in let st = scan_str info s initial_state ~groups in if st.idx = break then st else handle_last_newline info ~pos:(last - 1) st ~groups end else if groups then loop info s ~pos initial_state else loop_no_mark info s ~pos ~last initial_state (* This function adds a final boundary check on the input. This is useful to indicate that the output failed because of insufficient input, or to verify that the output actually matches for regex that have boundary conditions with respect to the input string. *) let final_boundary_check ~last ~slen re s ~info ~st ~groups = let final_cat = if last = slen then Category.(search_boundary ++ inexistant) else Category.(search_boundary ++ category re ~color:(get_color re s last)) in let (idx, res) = final info st final_cat in (match groups, res with | true, Match _ -> info.positions.(idx) <- last | _ -> ()); res let match_str ~groups ~partial re s ~pos ~len = let slen = String.length s in let last = if len = -1 then slen else pos + len in let info = { re ; colors = re.colors; pos ; last ; positions = if groups then begin let n = Automata.index_count re.tbl + 1 in if n <= 10 then [|0;0;0;0;0;0;0;0;0;0|] else Array.make n 0 end else [||] } in let initial_cat = if pos = 0 then Category.(search_boundary ++ inexistant) else Category.(search_boundary ++ category re ~color:(get_color re s (pos - 1))) in let initial_state = find_initial_state re initial_cat in let st = scan_str info s initial_state ~groups in let res = if st.idx = break || (partial && not groups) then Automata.status st.desc else if partial && groups then match Automata.status st.desc with | Match _ | Failed as status -> status | Running -> (* This could be because it's still not fully matched, or it could be that because we need to run special end of input checks. *) (match final_boundary_check ~last ~slen re s ~info ~st ~groups with | Match _ as status -> status | Failed | Running -> (* A failure here just means that we need more data, i.e. it's a partial match. *) Running) else final_boundary_check ~last ~slen re s ~info ~st ~groups in match res with Automata.Match (marks, pmarks) -> Match { s ; marks; pmarks ; gpos = info.positions; gcount = re.group_count} | Automata.Failed -> Failed | Automata.Running -> let no_match_starts_before = if groups then info.positions.(0) else 0 in Running { no_match_starts_before } let mk_re ~initial ~colors ~color_repr ~ncolor ~lnl ~group_names ~group_count = { initial ; initial_states = []; colors; color_repr; ncolor; lnl; tbl = Automata.create_working_area (); states = Automata.State.Table.create 97; group_names; group_count } (**** Character sets ****) let cseq c c' = Cset.seq (Char.code c) (Char.code c') let cadd c s = Cset.add (Char.code c) s let trans_set cache cm s = match Cset.one_char s with | Some i -> Cset.csingle cm.[i] | None -> let v = (Cset.hash_rec s, s) in try Cset.CSetMap.find v !cache with Not_found -> let l = Cset.fold_right s ~f:(fun (i, j) l -> Cset.union (cseq cm.[i] cm.[j]) l) ~init:Cset.empty in cache := Cset.CSetMap.add v l !cache; l (****) type regexp = Set of Cset.t | Sequence of regexp list | Alternative of regexp list | Repeat of regexp * int * int option | Beg_of_line | End_of_line | Beg_of_word | End_of_word | Not_bound | Beg_of_str | End_of_str | Last_end_of_line | Start | Stop | Sem of Automata.sem * regexp | Sem_greedy of Automata.rep_kind * regexp | Group of string option * regexp | No_group of regexp | Nest of regexp | Case of regexp | No_case of regexp | Intersection of regexp list | Complement of regexp list | Difference of regexp * regexp | Pmark of Pmark.t * regexp module View = struct type t = regexp = Set of Cset.t | Sequence of regexp list | Alternative of regexp list | Repeat of regexp * int * int option | Beg_of_line | End_of_line | Beg_of_word | End_of_word | Not_bound | Beg_of_str | End_of_str | Last_end_of_line | Start | Stop | Sem of Automata.sem * regexp | Sem_greedy of Automata.rep_kind * regexp | Group of string option * regexp | No_group of regexp | Nest of regexp | Case of regexp | No_case of regexp | Intersection of regexp list | Complement of regexp list | Difference of regexp * regexp | Pmark of Pmark.t * regexp let view t = t end let rec pp fmt t = let open Fmt in let var s re = sexp fmt s pp re in let seq s rel = sexp fmt s (list pp) rel in match t with | Set s -> sexp fmt "Set" Cset.pp s | Sequence sq -> seq "Sequence" sq | Alternative alt -> seq "Alternative" alt | Repeat (re, start, stop) -> let pp' fmt () = fprintf fmt "%a@ %d%a" pp re start optint stop in sexp fmt "Repeat" pp' () | Beg_of_line -> str fmt "Beg_of_line" | End_of_line -> str fmt "End_of_line" | Beg_of_word -> str fmt "Beg_of_word" | End_of_word -> str fmt "End_of_word" | Not_bound -> str fmt "Not_bound" | Beg_of_str -> str fmt "Beg_of_str" | End_of_str -> str fmt "End_of_str" | Last_end_of_line -> str fmt "Last_end_of_line" | Start -> str fmt "Start" | Stop -> str fmt "Stop" | Sem (sem, re) -> sexp fmt "Sem" (pair Automata.pp_sem pp) (sem, re) | Sem_greedy (k, re) -> sexp fmt "Sem_greedy" (pair Automata.pp_rep_kind pp) (k, re) | Group (None, c) -> var "Group" c | Group (Some n, c) -> sexp fmt "Named_group" (pair str pp) (n, c) | No_group c -> var "No_group" c | Nest c -> var "Nest" c | Case c -> var "Case" c | No_case c -> var "No_case" c | Intersection c -> seq "Intersection" c | Complement c -> seq "Complement" c | Difference (a, b) -> sexp fmt "Difference" (pair pp pp) (a, b) | Pmark (m, r) -> sexp fmt "Pmark" (pair Pmark.pp pp) (m, r) let rec is_charset = function | Set _ -> true | Alternative l | Intersection l | Complement l -> List.for_all is_charset l | Difference (r, r') -> is_charset r && is_charset r' | Sem (_, r) | Sem_greedy (_, r) | No_group r | Case r | No_case r -> is_charset r | Sequence _ | Repeat _ | Beg_of_line | End_of_line | Beg_of_word | End_of_word | Beg_of_str | End_of_str | Not_bound | Last_end_of_line | Start | Stop | Group _ | Nest _ | Pmark (_,_)-> false (*XXX Use a better algorithm allowing non-contiguous regions? *) let cupper = Cset.union (cseq 'A' 'Z') (Cset.union (cseq '\192' '\214') (cseq '\216' '\222')) let clower = Cset.offset 32 cupper let calpha = List.fold_right cadd ['\170'; '\181'; '\186'; '\223'; '\255'] (Cset.union clower cupper) let cdigit = cseq '0' '9' let calnum = Cset.union calpha cdigit let cword = cadd '_' calnum let colorize c regexp = let lnl = ref false in let rec colorize regexp = match regexp with Set s -> Color_map.split s c | Sequence l -> List.iter colorize l | Alternative l -> List.iter colorize l | Repeat (r, _, _) -> colorize r | Beg_of_line | End_of_line -> Color_map.split (Cset.csingle '\n') c | Beg_of_word | End_of_word | Not_bound -> Color_map.split cword c | Beg_of_str | End_of_str | Start | Stop -> () | Last_end_of_line -> lnl := true | Sem (_, r) | Sem_greedy (_, r) | Group (_, r) | No_group r | Nest r | Pmark (_,r) -> colorize r | Case _ | No_case _ | Intersection _ | Complement _ | Difference _ -> assert false in colorize regexp; !lnl (**** Compilation ****) let rec equal x1 x2 = match x1, x2 with Set s1, Set s2 -> s1 = s2 | Sequence l1, Sequence l2 -> eq_list l1 l2 | Alternative l1, Alternative l2 -> eq_list l1 l2 | Repeat (x1', i1, j1), Repeat (x2', i2, j2) -> i1 = i2 && j1 = j2 && equal x1' x2' | Beg_of_line, Beg_of_line | End_of_line, End_of_line | Beg_of_word, Beg_of_word | End_of_word, End_of_word | Not_bound, Not_bound | Beg_of_str, Beg_of_str | End_of_str, End_of_str | Last_end_of_line, Last_end_of_line | Start, Start | Stop, Stop -> true | Sem (sem1, x1'), Sem (sem2, x2') -> sem1 = sem2 && equal x1' x2' | Sem_greedy (k1, x1'), Sem_greedy (k2, x2') -> k1 = k2 && equal x1' x2' | Group _, Group _ -> (* Do not merge groups! *) false | No_group x1', No_group x2' -> equal x1' x2' | Nest x1', Nest x2' -> equal x1' x2' | Case x1', Case x2' -> equal x1' x2' | No_case x1', No_case x2' -> equal x1' x2' | Intersection l1, Intersection l2 -> eq_list l1 l2 | Complement l1, Complement l2 -> eq_list l1 l2 | Difference (x1', x1''), Difference (x2', x2'') -> equal x1' x2' && equal x1'' x2'' | Pmark (m1, r1), Pmark (m2, r2) -> Pmark.equal m1 m2 && equal r1 r2 | _ -> false and eq_list l1 l2 = match l1, l2 with [], [] -> true | x1 :: r1, x2 :: r2 -> equal x1 x2 && eq_list r1 r2 | _ -> false let sequence = function | [x] -> x | l -> Sequence l let rec merge_sequences = function | [] -> [] | Alternative l' :: r -> merge_sequences (l' @ r) | Sequence (x :: y) :: r -> begin match merge_sequences r with Sequence (x' :: y') :: r' when equal x x' -> Sequence [x; Alternative [sequence y; sequence y']] :: r' | r' -> Sequence (x :: y) :: r' end | x :: r -> x :: merge_sequences r module A = Automata let enforce_kind ids kind kind' cr = match kind, kind' with `First, `First -> cr | `First, k -> A.seq ids k cr (A.eps ids) | _ -> cr (* XXX should probably compute a category mask *) let rec translate ids kind ign_group ign_case greedy pos names cache c = function | Set s -> (A.cst ids (trans_set cache c s), kind) | Sequence l -> (trans_seq ids kind ign_group ign_case greedy pos names cache c l, kind) | Alternative l -> begin match merge_sequences l with [r'] -> let (cr, kind') = translate ids kind ign_group ign_case greedy pos names cache c r' in (enforce_kind ids kind kind' cr, kind) | merged_sequences -> (A.alt ids (List.map (fun r' -> let (cr, kind') = translate ids kind ign_group ign_case greedy pos names cache c r' in enforce_kind ids kind kind' cr) merged_sequences), kind) end | Repeat (r', i, j) -> let (cr, kind') = translate ids kind ign_group ign_case greedy pos names cache c r' in let rem = match j with None -> A.rep ids greedy kind' cr | Some j -> let f = match greedy with `Greedy -> fun rem -> A.alt ids [A.seq ids kind' (A.rename ids cr) rem; A.eps ids] | `Non_greedy -> fun rem -> A.alt ids [A.eps ids; A.seq ids kind' (A.rename ids cr) rem] in iter (j - i) f (A.eps ids) in (iter i (fun rem -> A.seq ids kind' (A.rename ids cr) rem) rem, kind) | Beg_of_line -> (A.after ids Category.(inexistant ++ newline), kind) | End_of_line -> (A.before ids Category.(inexistant ++ newline), kind) | Beg_of_word -> (A.seq ids `First (A.after ids Category.(inexistant ++ not_letter)) (A.before ids Category.letter), kind) | End_of_word -> (A.seq ids `First (A.after ids Category.letter) (A.before ids Category.(inexistant ++ not_letter)), kind) | Not_bound -> (A.alt ids [A.seq ids `First (A.after ids Category.letter) (A.before ids Category.letter); A.seq ids `First (A.after ids Category.(inexistant ++ not_letter)) (A.before ids Category.(inexistant ++ not_letter))], kind) | Beg_of_str -> (A.after ids Category.inexistant, kind) | End_of_str -> (A.before ids Category.inexistant, kind) | Last_end_of_line -> (A.before ids Category.(inexistant ++ lastnewline), kind) | Start -> (A.after ids Category.search_boundary, kind) | Stop -> (A.before ids Category.search_boundary, kind) | Sem (kind', r') -> let (cr, kind'') = translate ids kind' ign_group ign_case greedy pos names cache c r' in (enforce_kind ids kind' kind'' cr, kind') | Sem_greedy (greedy', r') -> translate ids kind ign_group ign_case greedy' pos names cache c r' | Group (n, r') -> if ign_group then translate ids kind ign_group ign_case greedy pos names cache c r' else let p = !pos in let () = match n with | Some name -> names := (name, p / 2) :: !names | None -> () in pos := !pos + 2; let (cr, kind') = translate ids kind ign_group ign_case greedy pos names cache c r' in (A.seq ids `First (A.mark ids p) ( A.seq ids `First cr (A.mark ids (p + 1))), kind') | No_group r' -> translate ids kind true ign_case greedy pos names cache c r' | Nest r' -> let b = !pos in let (cr, kind') = translate ids kind ign_group ign_case greedy pos names cache c r' in let e = !pos - 1 in if e < b then (cr, kind') else (A.seq ids `First (A.erase ids b e) cr, kind') | Difference _ | Complement _ | Intersection _ | No_case _ | Case _ -> assert false | Pmark (i, r') -> let (cr, kind') = translate ids kind ign_group ign_case greedy pos names cache c r' in (A.seq ids `First (A.pmark ids i) cr, kind') and trans_seq ids kind ign_group ign_case greedy pos names cache c = function | [] -> A.eps ids | [r] -> let (cr', kind') = translate ids kind ign_group ign_case greedy pos names cache c r in enforce_kind ids kind kind' cr' | r :: rem -> let (cr', kind') = translate ids kind ign_group ign_case greedy pos names cache c r in let cr'' = trans_seq ids kind ign_group ign_case greedy pos names cache c rem in if A.is_eps cr'' then cr' else if A.is_eps cr' then cr'' else A.seq ids kind' cr' cr'' (**** Case ****) let case_insens s = Cset.union s (Cset.union (Cset.offset 32 (Cset.inter s cupper)) (Cset.offset (-32) (Cset.inter s clower))) let as_set = function | Set s -> s | _ -> assert false (* XXX Should split alternatives into (1) charsets and (2) more complex regular expressions; alternative should therefore probably be flatten here *) let rec handle_case ign_case = function | Set s -> Set (if ign_case then case_insens s else s) | Sequence l -> Sequence (List.map (handle_case ign_case) l) | Alternative l -> let l' = List.map (handle_case ign_case) l in if is_charset (Alternative l') then Set (List.fold_left (fun s r -> Cset.union s (as_set r)) Cset.empty l') else Alternative l' | Repeat (r, i, j) -> Repeat (handle_case ign_case r, i, j) | Beg_of_line | End_of_line | Beg_of_word | End_of_word | Not_bound | Beg_of_str | End_of_str | Last_end_of_line | Start | Stop as r -> r | Sem (k, r) -> let r' = handle_case ign_case r in if is_charset r' then r' else Sem (k, r') | Sem_greedy (k, r) -> let r' = handle_case ign_case r in if is_charset r' then r' else Sem_greedy (k, r') | Group (n, r) -> Group (n, handle_case ign_case r) | No_group r -> let r' = handle_case ign_case r in if is_charset r' then r' else No_group r' | Nest r -> let r' = handle_case ign_case r in if is_charset r' then r' else Nest r' | Case r -> handle_case false r | No_case r -> handle_case true r | Intersection l -> let l' = List.map (fun r -> handle_case ign_case r) l in Set (List.fold_left (fun s r -> Cset.inter s (as_set r)) Cset.cany l') | Complement l -> let l' = List.map (fun r -> handle_case ign_case r) l in Set (Cset.diff Cset.cany (List.fold_left (fun s r -> Cset.union s (as_set r)) Cset.empty l')) | Difference (r, r') -> Set (Cset.inter (as_set (handle_case ign_case r)) (Cset.diff Cset.cany (as_set (handle_case ign_case r')))) | Pmark (i,r) -> Pmark (i,handle_case ign_case r) (****) let compile_1 regexp = let regexp = handle_case false regexp in let c = Color_map.make () in let need_lnl = colorize c regexp in let (colors, color_repr, ncolor) = Color_map.flatten c in let lnl = if need_lnl then ncolor else -1 in let ncolor = if need_lnl then ncolor + 1 else ncolor in let ids = A.create_ids () in let pos = ref 0 in let names = ref [] in let (r, kind) = translate ids `First false false `Greedy pos names (ref Cset.CSetMap.empty) colors regexp in let r = enforce_kind ids `First kind r in (*Format.eprintf "<%d %d>@." !ids ncol;*) mk_re ~initial:r ~colors ~color_repr ~ncolor ~lnl ~group_names:(List.rev !names) ~group_count:(!pos / 2) (****) let rec anchored = function | Sequence l -> List.exists anchored l | Alternative l -> List.for_all anchored l | Repeat (r, i, _) -> i > 0 && anchored r | Set _ | Beg_of_line | End_of_line | Beg_of_word | End_of_word | Not_bound | End_of_str | Last_end_of_line | Stop | Intersection _ | Complement _ | Difference _ -> false | Beg_of_str | Start -> true | Sem (_, r) | Sem_greedy (_, r) | Group (_, r) | No_group r | Nest r | Case r | No_case r | Pmark (_, r) -> anchored r (****) type t = regexp let str s = let l = ref [] in for i = String.length s - 1 downto 0 do l := Set (Cset.csingle s.[i]) :: !l done; Sequence !l let char c = Set (Cset.csingle c) let alt = function | [r] -> r | l -> Alternative l let seq = function | [r] -> r | l -> Sequence l let empty = alt [] let epsilon = seq [] let repn r i j = if i < 0 then invalid_arg "Re.repn"; begin match j with | Some j when j < i -> invalid_arg "Re.repn" | _ -> () end; Repeat (r, i, j) let rep r = repn r 0 None let rep1 r = repn r 1 None let opt r = repn r 0 (Some 1) let bol = Beg_of_line let eol = End_of_line let bow = Beg_of_word let eow = End_of_word let word r = seq [bow; r; eow] let not_boundary = Not_bound let bos = Beg_of_str let eos = End_of_str let whole_string r = seq [bos; r; eos] let leol = Last_end_of_line let start = Start let stop = Stop let longest r = Sem (`Longest, r) let shortest r = Sem (`Shortest, r) let first r = Sem (`First, r) let greedy r = Sem_greedy (`Greedy, r) let non_greedy r = Sem_greedy (`Non_greedy, r) let group ?name r = Group (name, r) let no_group r = No_group r let nest r = Nest r let mark r = let i = Pmark.gen () in (i,Pmark (i,r)) let set str = let s = ref Cset.empty in for i = 0 to String.length str - 1 do s := Cset.union (Cset.csingle str.[i]) !s done; Set !s let rg c c' = Set (cseq c c') let inter l = let r = Intersection l in if is_charset r then r else invalid_arg "Re.inter" let compl l = let r = Complement l in if is_charset r then r else invalid_arg "Re.compl" let diff r r' = let r'' = Difference (r, r') in if is_charset r'' then r'' else invalid_arg "Re.diff" let any = Set Cset.cany let notnl = Set (Cset.diff Cset.cany (Cset.csingle '\n')) let lower = alt [rg 'a' 'z'; char '\181'; rg '\223' '\246'; rg '\248' '\255'] let upper = alt [rg 'A' 'Z'; rg '\192' '\214'; rg '\216' '\222'] let alpha = alt [lower; upper; char '\170'; char '\186'] let digit = rg '0' '9' let alnum = alt [alpha; digit] let wordc = alt [alnum; char '_'] let ascii = rg '\000' '\127' let blank = set "\t " let cntrl = alt [rg '\000' '\031'; rg '\127' '\159'] let graph = alt [rg '\033' '\126'; rg '\160' '\255'] let print = alt [rg '\032' '\126'; rg '\160' '\255'] let punct = alt [rg '\033' '\047'; rg '\058' '\064'; rg '\091' '\096'; rg '\123' '\126'; rg '\160' '\169'; rg '\171' '\180'; rg '\182' '\185'; rg '\187' '\191'; char '\215'; char '\247'] let space = alt [char ' '; rg '\009' '\013'] let xdigit = alt [digit; rg 'a' 'f'; rg 'A' 'F'] let case r = Case r let no_case r = No_case r (****) let compile r = compile_1 ( if anchored r then group r else seq [shortest (rep any); group r] ) let exec_internal name ?(pos=0) ?(len = -1) ~partial ~groups re s = if pos < 0 || len < -1 || pos + len > String.length s then invalid_arg name; match_str ~groups ~partial re s ~pos ~len let exec ?pos ?len re s = match exec_internal "Re.exec" ?pos ?len ~groups:true ~partial:false re s with Match substr -> substr | _ -> raise Not_found let exec_opt ?pos ?len re s = match exec_internal "Re.exec_opt" ?pos ?len ~groups:true ~partial:false re s with Match substr -> Some substr | _ -> None let execp ?pos ?len re s = match exec_internal ~groups:false ~partial:false "Re.execp" ?pos ?len re s with Match _substr -> true | _ -> false let exec_partial ?pos ?len re s = match exec_internal ~groups:false ~partial:true "Re.exec_partial" ?pos ?len re s with Match _ -> `Full | Running _ -> `Partial | Failed -> `Mismatch let exec_partial_detailed ?pos ?len re s = match exec_internal ~groups:true ~partial:true "Re.exec_partial_detailed" ?pos ?len re s with Match group -> `Full group | Running { no_match_starts_before } -> `Partial no_match_starts_before | Failed -> `Mismatch module Mark = struct type t = Pmark.t let test (g : Group.t) p = Pmark.Set.mem p g.pmarks let all (g : Group.t) = g.pmarks module Set = Pmark.Set let equal = Pmark.equal let compare = Pmark.compare end type split_token = [ `Text of string | `Delim of Group.t ] module Rseq = struct let all ?(pos=0) ?len re s : _ Seq.t = if pos < 0 then invalid_arg "Re.all"; (* index of the first position we do not consider. !pos < limit is an invariant *) let limit = match len with | None -> String.length s | Some l -> if l<0 || pos+l > String.length s then invalid_arg "Re.all"; pos+l in (* iterate on matches. When a match is found, search for the next one just after its end *) let rec aux pos () = if pos >= limit then Seq.Nil (* no more matches *) else match match_str ~groups:true ~partial:false re s ~pos ~len:(limit - pos) with | Match substr -> let p1, p2 = Group.offset substr 0 in let pos = if p1=p2 then p2+1 else p2 in Seq.Cons (substr, aux pos) | Running _ | Failed -> Seq.Nil in aux pos let matches ?pos ?len re s : _ Seq.t = all ?pos ?len re s |> Seq.map (fun sub -> Group.get sub 0) let split_full ?(pos=0) ?len re s : _ Seq.t = if pos < 0 then invalid_arg "Re.split"; let limit = match len with | None -> String.length s | Some l -> if l<0 || pos+l > String.length s then invalid_arg "Re.split"; pos+l in (* i: start of delimited string pos: first position after last match of [re] limit: first index we ignore (!pos < limit is an invariant) *) let pos0 = pos in let rec aux state i pos () = match state with | `Idle when pos >= limit -> if i < limit then ( let sub = String.sub s i (limit - i) in Seq.Cons (`Text sub, aux state (i+1) pos) ) else Seq.Nil | `Idle -> begin match match_str ~groups:true ~partial:false re s ~pos ~len:(limit - pos) with | Match substr -> let p1, p2 = Group.offset substr 0 in let pos = if p1=p2 then p2+1 else p2 in let old_i = i in let i = p2 in if p1 > pos0 then ( (* string does not start by a delimiter *) let text = String.sub s old_i (p1 - old_i) in let state = `Yield (`Delim substr) in Seq.Cons (`Text text, aux state i pos) ) else Seq.Cons (`Delim substr, aux state i pos) | Running _ -> Seq.Nil | Failed -> if i < limit then ( let text = String.sub s i (limit - i) in (* yield last string *) Seq.Cons (`Text text, aux state limit pos) ) else Seq.Nil end | `Yield x -> Seq.Cons (x, aux `Idle i pos) in aux `Idle pos pos let split ?pos ?len re s : _ Seq.t = let seq = split_full ?pos ?len re s in let rec filter seq () = match seq () with | Seq.Nil -> Seq.Nil | Seq.Cons (`Delim _, tl) -> filter tl () | Seq.Cons (`Text s,tl) -> Seq.Cons (s, filter tl) in filter seq end module Rlist = struct let list_of_seq (s:'a Seq.t) : 'a list = Seq.fold_left (fun l x -> x :: l) [] s |> List.rev let all ?pos ?len re s = Rseq.all ?pos ?len re s |> list_of_seq let matches ?pos ?len re s = Rseq.matches ?pos ?len re s |> list_of_seq let split_full ?pos ?len re s = Rseq.split_full ?pos ?len re s |> list_of_seq let split ?pos ?len re s = Rseq.split ?pos ?len re s |> list_of_seq end module Gen = struct type 'a gen = unit -> 'a option let gen_of_seq (s:'a Seq.t) : 'a gen = let r = ref s in fun () -> match !r () with | Seq.Nil -> None | Seq.Cons (x, tl) -> r := tl; Some x let split ?pos ?len re s : _ gen = Rseq.split ?pos ?len re s |> gen_of_seq let split_full ?pos ?len re s : _ gen = Rseq.split_full ?pos ?len re s |> gen_of_seq let all ?pos ?len re s = Rseq.all ?pos ?len re s |> gen_of_seq let matches ?pos ?len re s = Rseq.matches ?pos ?len re s |> gen_of_seq end let replace ?(pos=0) ?len ?(all=true) re ~f s = if pos < 0 then invalid_arg "Re.replace"; let limit = match len with | None -> String.length s | Some l -> if l<0 || pos+l > String.length s then invalid_arg "Re.replace"; pos+l in (* buffer into which we write the result *) let buf = Buffer.create (String.length s) in (* iterate on matched substrings. *) let rec iter pos = if pos < limit then match match_str ~groups:true ~partial:false re s ~pos ~len:(limit-pos) with | Match substr -> let p1, p2 = Group.offset substr 0 in (* add string between previous match and current match *) Buffer.add_substring buf s pos (p1-pos); (* what should we replace the matched group with? *) let replacing = f substr in Buffer.add_string buf replacing; if all then (* if we matched a non-char e.g. ^ we must manually advance by 1 *) iter ( if p1=p2 then ( (* a non char could be past the end of string. e.g. $ *) if p2 < limit then Buffer.add_char buf s.[p2]; p2+1 ) else p2) else Buffer.add_substring buf s p2 (limit-p2) | Running _ -> () | Failed -> Buffer.add_substring buf s pos (limit-pos) in iter pos; Buffer.contents buf let replace_string ?pos ?len ?all re ~by s = replace ?pos ?len ?all re s ~f:(fun _ -> by) let witness t = let rec witness = function | Set c -> String.make 1 (Char.chr (Cset.pick c)) | Sequence xs -> String.concat "" (List.map witness xs) | Alternative (x :: _) -> witness x | Alternative [] -> assert false | Repeat (r, from, _to) -> let w = witness r in let b = Buffer.create (String.length w * from) in for _i=1 to from do Buffer.add_string b w done; Buffer.contents b | No_case r -> witness r | Intersection _ | Complement _ | Difference (_, _) -> assert false | Group (_, r) | No_group r | Nest r | Sem (_, r) | Pmark (_, r) | Case r | Sem_greedy (_, r) -> witness r | Beg_of_line | End_of_line | Beg_of_word | End_of_word | Not_bound | Beg_of_str | Last_end_of_line | Start | Stop | End_of_str -> "" in witness (handle_case false t) module Seq = Rseq module List = Rlist module Group = Group (** {2 Deprecated functions} *) let split_full_seq = Seq.split_full let split_seq = Seq.split let matches_seq = Seq.matches let all_seq = Seq.all type 'a gen = 'a Gen.gen let all_gen = Gen.all let matches_gen = Gen.matches let split_gen = Gen.split let split_full_gen = Gen.split_full type substrings = Group.t let get = Group.get let get_ofs = Group.offset let get_all = Group.all let get_all_ofs = Group.all_offset let test = Group.test type markid = Mark.t let marked = Mark.test let mark_set = Mark.all (**********************************) (* Information about the previous character: - does not exists - is a letter - is not a letter - is a newline - is last newline Beginning of word: - previous is not a letter or does not exist - current is a letter or does not exist End of word: - previous is a letter or does not exist - current is not a letter or does not exist Beginning of line: - previous is a newline or does not exist Beginning of buffer: - previous does not exist End of buffer - current does not exist End of line - current is a newline or does not exist *) (* Rep: e = T,e | () - semantics of the comma (shortest/longest/first) - semantics of the union (greedy/non-greedy) Bounded repetition a{0,3} = (a,(a,a?)?)? *) type groups = Group.t include Rlist
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>