Source file automata.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
type sem = [ `Longest | `Shortest | `First ]
type rep_kind = [ `Greedy | `Non_greedy ]
type mark = int
type idx = int
type expr = { id : int; def : def }
and def =
Cst of Cset.t
| Alt of expr list
| Seq of sem * expr * expr
| Eps
| Rep of rep_kind * sem * expr
| Mark of int
| Erase of int * int
| Before of Category.t
| After of Category.t
| Pmark of Pmark.t
let hash_combine h accu = accu * 65599 + h
module Marks = struct
type t =
{ marks : (int * int) list
; pmarks : Pmark.Set.t }
let empty = { marks = [] ; pmarks = Pmark.Set.empty }
let rec merge_marks_offset old = function
| [] ->
old
| (i, v) :: rem ->
let nw' = merge_marks_offset (List.remove_assq i old) rem in
if v = -2 then
nw'
else
(i, v) :: nw'
let merge old nw =
{ marks = merge_marks_offset old.marks nw.marks
; pmarks = Pmark.Set.union old.pmarks nw.pmarks }
let rec hash_marks_offset l accu =
match l with
[] -> accu
| (a, i) :: r -> hash_marks_offset r (hash_combine a (hash_combine i accu))
let hash m accu =
hash_marks_offset m.marks (hash_combine (Hashtbl.hash m.pmarks) accu)
let rec marks_set_idx idx = function
| (a, -1) :: rem ->
(a, idx) :: marks_set_idx idx rem
| marks ->
marks
let marks_set_idx marks idx =
{ marks with marks = marks_set_idx idx marks.marks }
let pp_marks ch t =
match t.marks with
| [] ->
()
| (a, i) :: r ->
Format.fprintf ch "%d-%d" a i;
List.iter (fun (a, i) -> Format.fprintf ch " %d-%d" a i) r
end
let pp_sem ch k =
Format.pp_print_string ch
(match k with
`Shortest -> "short"
| `Longest -> "long"
| `First -> "first")
let pp_rep_kind fmt = function
| `Greedy -> Format.pp_print_string fmt "Greedy"
| `Non_greedy -> Format.pp_print_string fmt "Non_greedy"
let rec pp ch e =
let open Fmt in
match e.def with
Cst l ->
sexp ch "cst" Cset.pp l;
| Alt l ->
sexp ch "alt" (list pp) l
| Seq (k, e, e') ->
sexp ch "seq" (triple pp_sem pp pp) (k, e, e')
| Eps ->
str ch "eps"
| Rep (_rk, k, e) ->
sexp ch "rep" (pair pp_sem pp) (k, e)
| Mark i ->
sexp ch "mark" int i
| Pmark i ->
sexp ch "pmark" int (i :> int)
| Erase (b, e) ->
sexp ch "erase" (pair int int) (b, e)
| Before c ->
sexp ch "before" Category.pp c
| After c ->
sexp ch "after" Category.pp c
let rec first f = function
| [] ->
None
| x :: r ->
match f x with
None -> first f r
| Some _ as res -> res
type ids = int ref
let create_ids () = ref 0
let eps_expr = { id = 0; def = Eps }
let mk_expr ids def =
incr ids;
{ id = !ids; def = def }
let empty ids = mk_expr ids (Alt [])
let cst ids s =
if Cset.is_empty s
then empty ids
else mk_expr ids (Cst s)
let alt ids = function
| [] -> empty ids
| [c] -> c
| l -> mk_expr ids (Alt l)
let seq ids kind x y =
match x.def, y.def with
Alt [], _ -> x
| _, Alt [] -> y
| Eps, _ -> y
| _, Eps when kind = `First -> x
| _ -> mk_expr ids (Seq (kind, x, y))
let is_eps expr =
match expr.def with
| Eps -> true
| _ -> false
let eps ids = mk_expr ids Eps
let rep ids kind sem x = mk_expr ids (Rep (kind, sem, x))
let mark ids m = mk_expr ids (Mark m)
let pmark ids i = mk_expr ids (Pmark i)
let erase ids m m' = mk_expr ids (Erase (m, m'))
let before ids c = mk_expr ids (Before c)
let after ids c = mk_expr ids (After c)
let rec rename ids x =
match x.def with
Cst _ | Eps | Mark _ | Pmark _ | Erase _ | Before _ | After _ ->
mk_expr ids x.def
| Alt l ->
mk_expr ids (Alt (List.map (rename ids) l))
| Seq (k, y, z) ->
mk_expr ids (Seq (k, rename ids y, rename ids z))
| Rep (g, k, y) ->
mk_expr ids (Rep (g, k, rename ids y))
type hash = int
type mark_infos = int array
type status = Failed | Match of mark_infos * Pmark.Set.t | Running
module E = struct
type t =
| TSeq of t list * expr * sem
| TExp of Marks.t * expr
| TMatch of Marks.t
let rec equal l1 l2 =
match l1, l2 with
| [], [] ->
true
| TSeq (l1', e1, _) :: r1, TSeq (l2', e2, _) :: r2 ->
e1.id = e2.id && equal l1' l2' && equal r1 r2
| TExp (marks1, e1) :: r1, TExp (marks2, e2) :: r2 ->
e1.id = e2.id && marks1 = marks2 && equal r1 r2
| TMatch marks1 :: r1, TMatch marks2 :: r2 ->
marks1 = marks2 && equal r1 r2
| _ ->
false
let rec hash l accu =
match l with
| [] ->
accu
| TSeq (l', e, _) :: r ->
hash r (hash_combine 0x172a1bce (hash_combine e.id (hash l' accu)))
| TExp (marks, e) :: r ->
hash r
(hash_combine 0x2b4c0d77 (hash_combine e.id (Marks.hash marks accu)))
| TMatch marks :: r ->
hash r (hash_combine 0x1c205ad5 (Marks.hash marks accu))
let texp marks x = TExp (marks, x)
let tseq kind x y rem =
match x with
[] -> rem
| [TExp (marks, {def = Eps ; _})] -> TExp (marks, y) :: rem
| _ -> TSeq (x, y, kind) :: rem
let rec print_state_rec ch e y =
match e with
| TMatch marks ->
Format.fprintf ch "@[<2>(Match@ %a)@]" Marks.pp_marks marks
| TSeq (l', x, _kind) ->
Format.fprintf ch "@[<2>(Seq@ ";
print_state_lst ch l' x;
Format.fprintf ch "@ %a)@]" pp x
| TExp (marks, {def = Eps; _}) ->
Format.fprintf ch "@[<2>(Exp@ %d@ (%a)@ (eps))@]" y.id Marks.pp_marks marks
| TExp (marks, x) ->
Format.fprintf ch "@[<2>(Exp@ %d@ (%a)@ %a)@]" x.id Marks.pp_marks marks pp x
and print_state_lst ch l y =
match l with
[] ->
Format.fprintf ch "()"
| e :: rem ->
print_state_rec ch e y;
List.iter
(fun e ->
Format.fprintf ch "@ | ";
print_state_rec ch e y)
rem
let pp ch t = print_state_lst ch [t] { id = 0; def = Eps }
end
module State = struct
type t =
{ idx: idx
; category: Category.t
; desc: E.t list
; mutable status: status option
; hash: hash }
let dummy =
{ idx = -1
; category = Category.dummy
; desc = []
; status = None
; hash = -1 }
let hash idx cat desc =
E.hash desc (hash_combine idx (hash_combine (Category.to_int cat) 0)) land 0x3FFFFFFF
let mk idx cat desc =
{ idx
; category = cat
; desc
; status = None
; hash = hash idx cat desc}
let create cat e = mk 0 cat [E.TExp (Marks.empty, e)]
let equal x y =
(x.hash : int) = y.hash && (x.idx : int) = y.idx &&
Category.equal x.category y.category && E.equal x.desc y.desc
let compare x y =
let c = compare (x.hash : int) y.hash in
if c <> 0 then c else
let c = Category.compare x.category y.category in
if c <> 0 then c else
compare x.desc y.desc
type t' = t
module Table = Hashtbl.Make(
struct
type t = t'
let equal = equal
let hash t = t.hash
end)
end
type working_area = bool array ref
let create_working_area () = ref [| false |]
let index_count w = Array.length !w
let reset_table a = Array.fill a 0 (Array.length a) false
let rec mark_used_indices tbl =
List.iter (function
| E.TSeq (l, _, _) -> mark_used_indices tbl l
| E.TExp (marks, _)
| E.TMatch marks ->
List.iter (fun (_, i) -> if i >= 0 then tbl.(i) <- true)
marks.Marks.marks)
let rec find_free tbl idx len =
if idx = len || not tbl.(idx) then idx else find_free tbl (idx + 1) len
let free_index tbl_ref l =
let tbl = !tbl_ref in
reset_table tbl;
mark_used_indices tbl l;
let len = Array.length tbl in
let idx = find_free tbl 0 len in
if idx = len then tbl_ref := Array.make (2 * len) false;
idx
let remove_matches = List.filter (function E.TMatch _ -> false | _ -> true)
let rec split_at_match_rec l' = function
| [] -> assert false
| E.TMatch _ :: r -> (List.rev l', remove_matches r)
| x :: r -> split_at_match_rec (x :: l') r
let split_at_match l = split_at_match_rec [] l
let rec remove_duplicates prev l y =
match l with
[] ->
([], prev)
| E.TMatch _ as x :: _ ->
([x], prev)
| E.TSeq (l', x, kind) :: r ->
let (l'', prev') = remove_duplicates prev l' x in
let (r', prev'') = remove_duplicates prev' r y in
(E.tseq kind l'' x r', prev'')
| E.TExp (_marks, {def = Eps; _}) as e :: r ->
if List.memq y.id prev then
remove_duplicates prev r y
else
let (r', prev') = remove_duplicates (y.id :: prev) r y in
(e :: r', prev')
| E.TExp (_marks, x) as e :: r ->
if List.memq x.id prev then
remove_duplicates prev r y
else
let (r', prev') = remove_duplicates (x.id :: prev) r y in
(e :: r', prev')
let rec set_idx idx = function
| [] ->
[]
| E.TMatch marks :: r ->
E.TMatch (Marks.marks_set_idx marks idx) :: set_idx idx r
| E.TSeq (l', x, kind) :: r ->
E.TSeq (set_idx idx l', x, kind) :: set_idx idx r
| E.TExp (marks, x) :: r ->
E.TExp ((Marks.marks_set_idx marks idx), x) :: set_idx idx r
let filter_marks b e marks =
{marks with Marks.marks = List.filter (fun (i, _) -> i < b || i > e) marks.Marks.marks }
let rec delta_1 marks c ~next_cat ~prev_cat x rem =
match x.def with
Cst s ->
if Cset.mem c s then E.texp marks eps_expr :: rem else rem
| Alt l ->
delta_2 marks c ~next_cat ~prev_cat l rem
| Seq (kind, y, z) ->
let y' = delta_1 marks c ~next_cat ~prev_cat y [] in
delta_seq c ~next_cat ~prev_cat kind y' z rem
| Rep (rep_kind, kind, y) ->
let y' = delta_1 marks c ~next_cat ~prev_cat y [] in
let (y'', marks') =
match
first
(function E.TMatch marks -> Some marks | _ -> None) y'
with
None -> (y', marks)
| Some marks' -> (remove_matches y', marks')
in
begin match rep_kind with
`Greedy -> E.tseq kind y'' x (E.TMatch marks' :: rem)
| `Non_greedy -> E.TMatch marks :: E.tseq kind y'' x rem
end
| Eps ->
E.TMatch marks :: rem
| Mark i ->
let marks = { marks with Marks.marks = (i, -1) :: List.remove_assq i marks.Marks.marks } in
E.TMatch marks :: rem
| Pmark i ->
let marks = { marks with Marks.pmarks = Pmark.Set.add i marks.Marks.pmarks } in
E.TMatch marks :: rem
| Erase (b, e) ->
E.TMatch (filter_marks b e marks) :: rem
| Before cat'' ->
if Category.intersect next_cat cat'' then E.TMatch marks :: rem else rem
| After cat'' ->
if Category.intersect prev_cat cat'' then E.TMatch marks :: rem else rem
and delta_2 marks c ~next_cat ~prev_cat l rem =
match l with
[] -> rem
| y :: r ->
delta_1 marks c ~next_cat ~prev_cat y
(delta_2 marks c ~next_cat ~prev_cat r rem)
and delta_seq c ~next_cat ~prev_cat kind y z rem =
match
first (function E.TMatch marks -> Some marks | _ -> None) y
with
None ->
E.tseq kind y z rem
| Some marks ->
match kind with
`Longest ->
E.tseq kind (remove_matches y) z
(delta_1 marks c ~next_cat ~prev_cat z rem)
| `Shortest ->
delta_1 marks c ~next_cat ~prev_cat z
(E.tseq kind (remove_matches y) z rem)
| `First ->
let (y', y'') = split_at_match y in
E.tseq kind y' z
(delta_1 marks c ~next_cat ~prev_cat z (E.tseq kind y'' z rem))
let rec delta_3 c ~next_cat ~prev_cat x rem =
match x with
E.TSeq (y, z, kind) ->
let y' = delta_4 c ~next_cat ~prev_cat y [] in
delta_seq c ~next_cat ~prev_cat kind y' z rem
| E.TExp (marks, e) ->
delta_1 marks c ~next_cat ~prev_cat e rem
| E.TMatch _ ->
x :: rem
and delta_4 c ~next_cat ~prev_cat l rem =
match l with
[] -> rem
| y :: r ->
delta_3 c ~next_cat ~prev_cat y
(delta_4 c ~next_cat ~prev_cat r rem)
let delta tbl_ref next_cat char st =
let prev_cat = st.State.category in
let (expr', _) =
remove_duplicates []
(delta_4 char ~next_cat ~prev_cat st.State.desc [])
eps_expr in
let idx = free_index tbl_ref expr' in
let expr'' = set_idx idx expr' in
State.mk idx next_cat expr''
let rec red_tr = function
| [] | [_] as l ->
l
| ((s1, st1) as tr1) :: ((s2, st2) as tr2) :: rem ->
if State.equal st1 st2 then
red_tr ((Cset.union s1 s2, st1) :: rem)
else
tr1 :: red_tr (tr2 :: rem)
let simpl_tr l =
List.sort
(fun (s1, _) (s2, _) -> compare s1 s2)
(red_tr (List.sort (fun (_, st1) (_, st2) -> State.compare st1 st2) l))
let prepend_deriv = List.fold_right (fun (s, x) l -> Cset.prepend s x l)
let rec restrict s = function
| [] -> []
| (s', x') :: rem ->
let s'' = Cset.inter s s' in
if Cset.is_empty s''
then restrict s rem
else (s'', x') :: restrict s rem
let rec remove_marks b e rem =
if b > e then rem else remove_marks b (e - 1) ((e, -2) :: rem)
let rec prepend_marks_expr m = function
| E.TSeq (l, e', s) -> E.TSeq (prepend_marks_expr_lst m l, e', s)
| E.TExp (m', e') -> E.TExp (Marks.merge m m', e')
| E.TMatch m' -> E.TMatch (Marks.merge m m')
and prepend_marks_expr_lst m l =
List.map (prepend_marks_expr m) l
let prepend_marks m =
List.map (fun (s, x) -> (s, prepend_marks_expr_lst m x))
let rec deriv_1 all_chars categories marks cat x rem =
match x.def with
| Cst s ->
Cset.prepend s [E.texp marks eps_expr] rem
| Alt l ->
deriv_2 all_chars categories marks cat l rem
| Seq (kind, y, z) ->
let y' = deriv_1 all_chars categories marks cat y [(all_chars, [])] in
deriv_seq all_chars categories cat kind y' z rem
| Rep (rep_kind, kind, y) ->
let y' = deriv_1 all_chars categories marks cat y [(all_chars, [])] in
List.fold_right
(fun (s, z) rem ->
let (z', marks') =
match
first
(function E.TMatch marks -> Some marks | _ -> None)
z
with
None -> (z, marks)
| Some marks' -> (remove_matches z, marks')
in
Cset.prepend s
(match rep_kind with
`Greedy -> E.tseq kind z' x [E.TMatch marks']
| `Non_greedy -> E.TMatch marks :: E.tseq kind z' x [])
rem)
y' rem
| Eps ->
Cset.prepend all_chars [E.TMatch marks] rem
| Mark i ->
Cset.prepend all_chars [E.TMatch {marks with Marks.marks = ((i, -1) :: List.remove_assq i marks.Marks.marks)}] rem
| Pmark _ ->
Cset.prepend all_chars [E.TMatch marks] rem
| Erase (b, e) ->
Cset.prepend all_chars
[E.TMatch {marks with Marks.marks = (remove_marks b e (filter_marks b e marks).Marks.marks)}] rem
| Before cat' ->
Cset.prepend (List.assq cat' categories) [E.TMatch marks] rem
| After cat' ->
if Category.intersect cat cat' then Cset.prepend all_chars [E.TMatch marks] rem else rem
and deriv_2 all_chars categories marks cat l rem =
match l with
[] -> rem
| y :: r -> deriv_1 all_chars categories marks cat y
(deriv_2 all_chars categories marks cat r rem)
and deriv_seq all_chars categories cat kind y z rem =
if
List.exists
(fun (_s, xl) ->
List.exists (function E.TMatch _ -> true | _ -> false) xl)
y
then
let z' = deriv_1 all_chars categories Marks.empty cat z [(all_chars, [])] in
List.fold_right
(fun (s, y) rem ->
match
first (function E.TMatch marks -> Some marks | _ -> None)
y
with
None ->
Cset.prepend s (E.tseq kind y z []) rem
| Some marks ->
let z'' = prepend_marks marks z' in
match kind with
`Longest ->
Cset.prepend s (E.tseq kind (remove_matches y) z []) (
prepend_deriv (restrict s z'') rem)
| `Shortest ->
prepend_deriv (restrict s z'') (
Cset.prepend s (E.tseq kind (remove_matches y) z []) rem)
| `First ->
let (y', y'') = split_at_match y in
Cset.prepend s (E.tseq kind y' z []) (
prepend_deriv (restrict s z'') (
Cset.prepend s (E.tseq kind y'' z []) rem)))
y rem
else
List.fold_right
(fun (s, xl) rem -> Cset.prepend s (E.tseq kind xl z []) rem) y rem
let rec deriv_3 all_chars categories cat x rem =
match x with
E.TSeq (y, z, kind) ->
let y' = deriv_4 all_chars categories cat y [(all_chars, [])] in
deriv_seq all_chars categories cat kind y' z rem
| E.TExp (marks, e) ->
deriv_1 all_chars categories marks cat e rem
| E.TMatch _ ->
Cset.prepend all_chars [x] rem
and deriv_4 all_chars categories cat l rem =
match l with
[] -> rem
| y :: r -> deriv_3 all_chars categories cat y
(deriv_4 all_chars categories cat r rem)
let deriv tbl_ref all_chars categories st =
let der = deriv_4 all_chars categories st.State.category st.State.desc
[(all_chars, [])] in
simpl_tr (
List.fold_right (fun (s, expr) rem ->
let (expr', _) = remove_duplicates [] expr eps_expr in
let idx = free_index tbl_ref expr' in
let expr'' = set_idx idx expr' in
List.fold_right (fun (cat', s') rem ->
let s'' = Cset.inter s s' in
if Cset.is_empty s''
then rem
else (s'', State.mk idx cat' expr'') :: rem)
categories rem) der [])
let flatten_match m =
let ma = List.fold_left (fun ma (i, _) -> max ma i) (-1) m in
let res = Array.make (ma + 1) (-1) in
List.iter (fun (i, v) -> res.(i) <- v) m;
res
let status s =
match s.State.status with
Some st ->
st
| None ->
let st =
match s.State.desc with
[] -> Failed
| E.TMatch m :: _ -> Match (flatten_match m.Marks.marks, m.Marks.pmarks)
| _ -> Running
in
s.State.status <- Some st;
st