package dolmen

  1. Overview
  2. Docs
A parser library

Install

Dune Dependency

Authors

Maintainers

Sources

dolmen-v0.5.tbz
sha256=b9a6f80bf13fdf1fd69ff2013f583582fa00e13c86ee6f800737fabcfd530458
sha512=84b8c18e56b3fb20674af0a3729b7e15e543f21b0062c565b575b994388eb55ee8123e5d3d31f5f1042b204544b3084089a024c742ab741ddd7e18b5641dd399

doc/src/dolmen.std/term.ml.html

Source file term.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639

(* This file is free software, part of dolmen. See file "LICENSE" for more information. *)

type location = Loc.t

type builtin =
  | Wildcard
  | Ttype
  | Unit | Void
  | Prop | Bool
  | True | False
  | Eq | Distinct       (* Should all args be pairwise distinct or equal ? *)

  | Ite                 (* Condional *)
  | Sequent             (* Is the given sequent provable ? *)

  | Int                 (* Arithmetic type for integers *)
  | Real                (* Arithmetic type for reals *)
  | Minus               (* arithmetic unary minus *)
  | Add | Sub | Mult    (* arithmetic operators *)
  | Div | Mod           (* arithmetic division *)
  | Int_pow | Real_pow  (* arithmetic power (it's over 9000!) *)
  | Lt | Leq            (* arithmetic comparisons *)
  | Gt | Geq            (* arithmetic comparisons *)

  | Subtype             (* Function type constructor and subtyping relation *)
  | Product | Union     (* Product and union of types (not set theory) *)

  | Not                 (* Propositional negation *)
  | And | Or            (* Conjunction and disjunction *)
  | Nand | Xor | Nor    (* Advanced propositional connectives *)
  | Imply | Implied     (* Implication and left implication *)
  | Equiv               (* Equivalence *)

  | Bitv of int         (* Bitvector type (with given length) *)
  | Bitv_extract of int * int (* Bitvector extraction *)
  | Bitv_concat         (* Bitvector concatenation *)

  | Array_get
  | Array_set           (* array operations *)

  | Adt_check
  | Adt_project         (* adt operations *)

  | Record
  | Record_with
  | Record_access       (* record operations *)

  | Maps_to
  | In_interval of bool * bool
  | Check | Cut         (* alt-ergo builtins *)

type binder =
  | All | Ex
  | Pi | Arrow
  | Let | Fun           (* Standard binders *)
  | Choice              (* Indefinite description, or epsilon terms *)
  | Description         (* Definite description *)

type descr =
  | Symbol of Id.t
  | Builtin of builtin
  | Colon of t * t
  | App of t * t list
  | Binder of binder * t list * t
  | Match of t * (t * t) list

and t = {
  term : descr;
  attr : t list;
  loc : location;
}

(* Printing info *)

let infix_builtin n = function
  | Add | Sub
  | Lt | Leq
  | Gt | Geq
  | Eq | And | Or
  | Nand | Xor | Nor
  | Imply | Implied | Equiv
  | Product | Union
  | Sequent | Subtype
  | Adt_check | Adt_project | Record_access
    -> true
  | Distinct when n = 2
    -> true
  | _ -> false

let builtin_to_string = function
  | Wildcard -> "_"
  | Ttype -> "Ttype"
  | Unit -> "unit"
  | Void -> "()"
  | Prop -> "Prop"
  | Bool -> "Bool"
  | True -> "⊤"
  | False -> "⊥"
  | Eq -> "=="
  | Distinct -> "!="
  | Ite -> "ite"
  | Sequent -> "⊢"
  | Int -> "ℤ"
  | Real -> "ℝ"
  | Minus -> "-"
  | Add -> "+"
  | Sub -> "-"
  | Mult -> "×"
  | Div -> "÷"
  | Mod -> "mod"
  | Int_pow -> "**"
  | Real_pow -> "**."
  | Lt -> "<"
  | Leq -> "≤"
  | Gt -> ">"
  | Geq -> "≥"
  | Subtype -> "⊂"
  | Product -> "*"
  | Union -> "∪"
  | Not -> "¬"
  | And -> "∧"
  | Or -> "∨"
  | Nand -> "⊼"
  | Xor -> "⊻"
  | Nor -> "V"
  | Imply -> "⇒"
  | Implied -> "⇐"
  | Equiv -> "⇔"
  | Bitv i -> Printf.sprintf "bitv(%d)" i
  | Bitv_extract (i, j) -> Printf.sprintf "bitv_extract(%d;%d)" i j
  | Bitv_concat -> "bitv_concat"
  | Array_get -> "get"
  | Array_set -> "set"
  | Adt_check -> "?"
  | Adt_project -> "#"
  | Record -> "record"
  | Record_with -> "record_with"
  | Record_access -> "."
  | Maps_to -> "↦"
  | In_interval (b, b') ->
    let bracket = function true -> "]" | false -> "[" in
    Printf.sprintf "in_interval%s%s" (bracket b) (bracket (not b'))
  | Check -> "check"
  | Cut -> "cut"

let binder_to_string = function
  | All -> "∀"
  | Ex -> "∃"
  | Pi -> "Π"
  | Arrow -> "→"
  | Let -> "let"
  | Fun -> "λ"
  | Choice -> "ε"
  | Description -> "@"

(* Debug printing *)

let pp_builtin b builtin =
  Printf.bprintf b "%s" (builtin_to_string builtin)

let pp_binder b binder =
  Printf.bprintf b "%s" (binder_to_string binder)

let rec pp_descr b = function
  | Symbol id -> Id.pp b id
  | Builtin s -> pp_builtin b s
  | Colon (u, v) -> Printf.bprintf b "%a : %a" pp u pp v
  | App ({ term = Builtin sep ; _ }, l) when infix_builtin (List.length l) sep ->
    Misc.pp_list ~pp_sep:pp_builtin ~sep ~pp b l
  | App (f, l) ->
    Printf.bprintf b "%a(%a)" pp f
      (Misc.pp_list ~pp_sep:Buffer.add_string ~sep:"," ~pp) l
  | Binder (Arrow as q, l, e) ->
    Printf.bprintf b "%a %a %a"
      (Misc.pp_list ~pp_sep:Buffer.add_string ~sep:" → " ~pp) l pp_binder q pp e
  | Binder (q, l, e) ->
    Printf.bprintf b "%a %a. %a" pp_binder q
      (Misc.pp_list ~pp_sep:Buffer.add_string ~sep:"," ~pp) l pp e
  | Match (t, l) ->
    Printf.bprintf b "match %a with %a"
      pp t (Misc.pp_list ~pp_sep:Buffer.add_string ~sep:" | " ~pp:pp_match_case) l

and pp_match_case b (pattern, branch) =
  Printf.bprintf b "%a => %a" pp pattern pp branch

and pp b = function
  | { term = (Symbol _) as d; _ }
  | { term = (Builtin _) as d; _ } -> pp_descr b d
  | e -> Printf.bprintf b "(%a)" pp_descr e.term

(* Pretty-printing *)

let print_builtin fmt builtin =
  Format.fprintf fmt "%s" (builtin_to_string builtin)

let print_binder fmt binder =
  Format.fprintf fmt "%s" (binder_to_string binder)

let rec print_descr fmt = function
  | Symbol id -> Id.print fmt id
  | Builtin s -> print_builtin fmt s
  | Colon (u, v) -> Format.fprintf fmt "%a :@ %a" print u print v
  | App ({ term = Builtin sep ; _ }, l) when infix_builtin (List.length l) sep ->
    Misc.print_list ~print_sep:print_builtin ~sep ~print fmt l
  | App (f, []) ->
    Format.fprintf fmt "%a" print f
  | App (f, l) ->
    Format.fprintf fmt "%a@ %a" print f
      (Misc.print_list ~print_sep:Format.fprintf ~sep:"@ " ~print) l
  | Binder (Arrow as q, l, e) ->
    Format.fprintf fmt "%a %a@ %a"
      (Misc.print_list ~print_sep:Format.fprintf ~sep:"→@ " ~print) l
      print_binder q print e
  | Binder (q, l, e) ->
    Format.fprintf fmt "%a@ %a.@ %a" print_binder q
      (Misc.print_list ~print_sep:Format.fprintf ~sep:"@ " ~print) l print e
  | Match (t, l) ->
    Format.fprintf fmt "match %a with %a" print t
      (Misc.print_list ~print_sep:Format.fprintf ~sep:" | " ~print:print_match_case) l

and print_match_case fmt (pattern, branch) =
  Format.fprintf fmt "%a => %a" print pattern print branch

and print_attr fmt = function
  | [] -> ()
  | a :: r ->
    Format.fprintf fmt "{%a}@,%a" print a print_attr r

and print fmt = function
  | { term = (Symbol _) as d ; attr; _ }
  | { term = (Builtin _) as d ; attr; _ } ->
    Format.fprintf fmt "@[<hov 2>%a@,%a@]"
      print_descr d
      print_attr attr
  | e ->
    Format.fprintf fmt "@[<hov 2>(%a)@,%a@]"
      print_descr e.term
      print_attr e.attr

(* Comparison *)
let _descr = function
  | Symbol _  -> 1
  | Builtin _ -> 2
  | Colon _   -> 3
  | App _     -> 4
  | Binder _  -> 5
  | Match _   -> 6

let rec compare_list cmp l l' =
  match l, l' with
  | [], [] -> 0
  | _ :: _, [] -> 1
  | [], _ :: _ -> -1
  | t :: r, t' :: r' ->
    begin match cmp t t' with
      | 0 -> compare_list cmp r r'
      | x -> x
    end

let rec compare t t' =
  match t.term, t'.term with
  | Symbol s, Symbol s' -> Id.compare s s'
  | Builtin b, Builtin b' -> Stdlib.compare b b'
  | Colon (t1, t2), Colon (t1', t2') ->
    compare_list compare [t1; t2] [t1'; t2']
  | App (f, l), App(f', l') ->
    compare_list compare (f :: l) (f' :: l')
  | Binder (b, vars, t), Binder (b', vars', t') ->
    begin match Stdlib.compare b b' with
      | 0 ->
        begin match compare_list compare vars vars' with
          | 0 -> compare t t'
          | x -> x
        end
      | x -> x
    end
  | Match (t, l), Match (t', l') ->
    begin match compare t t' with
      | 0 -> compare_list compare_pair l l'
      | x -> x
    end
  | u, v -> (_descr u) - (_descr v)

and compare_pair (a, b) (c, d) =
  match compare a c with
  | 0 -> compare b d
  | x -> x


let equal t t' = compare t t' = 0

(* Add an attribute *)
let add_attr a t = { t with attr = a :: t.attr }

let add_attrs l t = { t with attr = l @ t.attr }

let set_attrs l t =
  assert (t.attr = []);
  { t with attr = l }

(* Make a term from its description *)
let make ?(loc=Loc.no_loc) ?(attr=[]) term = { term; attr; loc; }

let builtin b ?loc () = make ?loc (Builtin b)

(* Internal shortcut to make a formula with bound variables. *)
let mk_bind binder ?loc vars t =
  make ?loc (Binder (binder, vars, t))

(* Attach an attribute list to a term *)
let annot ?(loc=Loc.no_loc) t l =
  { t with attr = t.attr @ l; loc }

(* Create a constant and/or variable, that is a leaf
   of the term AST. *)
let const ?loc id = make ?loc (Symbol id)

(* Apply a term to a list of terms. *)
let apply ?loc f args = make ?loc (App (f, args))

let match_ ?loc t l = make ?loc (Match (t, l))

(* Juxtapose two terms, usually a term and its type.
   Used mainly for typed variables, or type annotations. *)
let colon ?loc t t' = make ?loc (Colon (t, t'))

let eq_t        = builtin Eq
let neq_t       = builtin Distinct
let not_t       = builtin Not
let or_t        = builtin Or
let and_t       = builtin And
let xor_t       = builtin Xor
let nor_t       = builtin Nor
let nand_t      = builtin Nand
let equiv_t     = builtin Equiv
let implies_t   = builtin Imply
let implied_t   = builtin Implied

let void        = builtin Void
let true_       = builtin True
let false_      = builtin False
let wildcard    = builtin Wildcard

let ite_t       = builtin Ite
let sequent_t   = builtin Sequent

let union_t     = builtin Union
let product_t   = builtin Product
let subtype_t   = builtin Subtype

let tType       = builtin Ttype
let prop        = builtin Prop
let bool        = builtin Bool
let data_t ?loc () = const ?loc Id.(mk Attr "$data")

let ty_unit     = builtin Unit
let ty_int      = builtin Int
let ty_real     = builtin Real
let uminus_t    = builtin Minus
let add_t       = builtin Add
let sub_t       = builtin Sub
let mult_t      = builtin Mult
let div_t       = builtin Div
let mod_t       = builtin Mod
let int_pow_t   = builtin Int_pow
let real_pow_t  = builtin Real_pow
let lt_t        = builtin Lt
let leq_t       = builtin Leq
let gt_t        = builtin Gt
let geq_t       = builtin Geq

let array_get_t = builtin Array_get
let array_set_t = builtin Array_set

let bitv_t i            = builtin (Bitv i)
let bitv_concat_t       = builtin Bitv_concat
let bitv_extract_t i j  = builtin (Bitv_extract (i, j))

let adt_check_t         = builtin Adt_check
let adt_project_t       = builtin Adt_project

let record_t            = builtin Record
let record_with_t       = builtin Record_with
let record_access_t     = builtin Record_access

let nary t = (fun ?loc l -> apply ?loc (t ?loc ()) l)
let unary t = (fun ?loc x -> apply ?loc (t ?loc ()) [x])
let binary t = (fun ?loc x y -> apply ?loc (t ?loc ()) [x; y])
let tertiary t = (fun ?loc x y z -> apply ?loc (t ?loc ()) [x; y; z])

(* {2 Usual functions} *)

let eq = binary eq_t
let neq = nary neq_t

(* {2 Logical connectives} *)

let not_  = unary not_t
let or_   = nary or_t
let and_  = nary and_t
let xor   = binary xor_t
let imply = binary implies_t
let equiv = binary equiv_t

(** {2 Arithmetic} *)

let uminus  = unary uminus_t
let add     = binary add_t
let sub     = binary sub_t
let mult    = binary mult_t
let div     = binary div_t
let mod_    = binary mod_t
let int_pow = binary int_pow_t
let real_pow = binary real_pow_t
let lt      = binary lt_t
let leq     = binary leq_t
let gt      = binary gt_t
let geq     = binary geq_t

(* {2 Arrays} *)

let array_get = binary array_get_t
let array_set = tertiary array_set_t

(* {2 Bitvectors} *)

let ty_bitv ?loc i =
  apply ?loc (bitv_t i ?loc ()) []

let bitv_extract ?loc t i j =
  apply ?loc (bitv_extract_t i j ?loc ()) [t]

let bitv_concat = binary bitv_concat_t

(* {2 ADTs} *)

let adt_check ?loc t id =
  let x = const ?loc id in
  apply ?loc (adt_check_t ?loc ()) [t; x]

let adt_project ?loc t id =
  let x = const ?loc id in
  apply ?loc (adt_project_t ?loc ()) [t; x]

(** {2 Records} *)

let record = nary record_t

let record_with ?loc t l =
  nary record_with_t ?loc (t :: l)

let record_access ?loc t id =
  let x = const ?loc id in
  binary record_access_t ?loc t x


(* {2 Binders} *)

let pi = mk_bind Pi
let letin = mk_bind Let
let exists = mk_bind Ex
let forall = mk_bind All
let lambda = mk_bind Fun
let choice = mk_bind Choice
let description = mk_bind Description

let fun_ty = mk_bind Arrow
let arrow ?loc arg ret = fun_ty ?loc [arg] ret

(* {2 Free variables} *)

module S = Set.Make(Id)

let rec free_vars acc t =
  match t.term with
  | Builtin _ -> acc
  | Colon (t, t') -> free_vars (free_vars acc t) t'
  | Symbol i -> if i.Id.ns = Id.Var then S.add i acc else acc
  | App (t, l) ->
    List.fold_left free_vars (free_vars acc t) l
  | Binder (Arrow, l, t) ->
    List.fold_left free_vars (free_vars acc t) l
  | Binder (_, l, t) ->
    let s = free_vars S.empty t in
    let bound, free =
      List.fold_left free_vars_bound (S.empty, S.empty) l
    in
    let s' = S.filter (fun x -> not (S.mem x bound)) s in
    S.union acc (S.union s' free)
  | Match (t, l) ->
    let acc = List.fold_left (fun acc (pattern, branch) ->
        let s = free_vars S.empty branch in
        let bound = free_vars S.empty pattern in
        let s' = S.filter (fun x -> not (S.mem x bound)) s in
        S.union s' acc
      ) acc l in
    free_vars acc t

and free_vars_bound (bound, free) t =
  match t.term with
  | Colon (v, ty) -> free_vars bound v, free_vars free ty
  | _ -> free_vars bound t, free

let fv t =
  S.elements (free_vars S.empty t)


(* {2 Wrappers for alt-ergo} *)

let bitv ?loc s = const ?loc Id.(mk (Value Bitvector) s)

let cut = unary (builtin Cut)
let check = unary (builtin Check)

let trigger = and_

let triggers_t = Id.(mk Attr "triggers")
let triggers ?loc t = function
  | [] -> t
  | l ->
    let a = apply ?loc (const ?loc triggers_t) l in
    annot ?loc t [a]

let filters_t = Id.(mk Attr "filters")
let filters ?loc t = function
  | [] -> t
  | l ->
    let a = apply ?loc (const ?loc filters_t) l in
    annot ?loc t [a]

let tracked ?loc id t =
  let a = const ?loc id in
  annot ?loc t [a]

let maps_to ?loc id t =
  let a = const ?loc id in
  binary (builtin Maps_to) ?loc a t

let in_interval ?loc t (lb, ls) (rb, rs) =
  tertiary (builtin (In_interval (ls, rs))) ?loc t lb rb


(* {2 Wrappers for dimacs} *)

let atom ?loc i =
  let s = Printf.sprintf "#%d" (abs i) in
  if i >= 0 then const ?loc Id.(mk Term s)
  else not_ ?loc (const ?loc Id.(mk Term s))


(* {2 Wrappers for smtlib} *)

let str ?loc s = const ?loc Id.(mk (Value String) s)
let int ?loc s = const ?loc Id.(mk (Value Integer) s)
let real ?loc s = const ?loc Id.(mk (Value Real) s)
let hexa ?loc s = const ?loc Id.(mk (Value Hexadecimal) s)
let binary ?loc s = const ?loc Id.(mk (Value Binary) s)

let sexpr ?loc l = apply ?loc (const Id.(mk Attr "$data")) l

let par ?loc vars t =
  let vars = List.map (fun v -> colon ?loc v (tType ?loc ())) vars in
  forall ?loc vars t


(* {2 Wrappers for tptp} *)

let rat ?loc s = const ?loc Id.(mk (Value Rational) s)
let distinct = const

let var ?loc id = const ?loc { id with Id.ns = Id.Var }

let ite ?loc a b c = apply ?loc (ite_t ?loc ()) [a; b; c]

let sequent ?loc hyps goals =
  let hyps_t = apply ?loc (or_t ?loc ()) hyps in
  let goals_t = apply ?loc (and_t ?loc ()) goals in
  apply ?loc (sequent_t ?loc ()) [hyps_t; goals_t]

let union ?loc a b = apply ?loc (union_t ?loc ()) [a; b]
let product ?loc a b = apply ?loc (product_t ?loc ()) [a; b]
let subtype ?loc a b = apply ?loc (subtype_t ?loc ()) [a; b]

(* {2 Wrappers for Zf} *)

let quoted ?loc name =
  const ?loc Id.({ name; ns = Attr})

(* {2 Term traversal} *)

type 'a mapper = {
  symbol    : 'a mapper -> attr:t list -> loc:location -> Id.t -> 'a;
  builtin   : 'a mapper -> attr:t list -> loc:location -> builtin -> 'a;
  colon     : 'a mapper -> attr:t list -> loc:location -> t -> t -> 'a;
  app       : 'a mapper -> attr:t list -> loc:location -> t -> t list -> 'a;
  binder    : 'a mapper -> attr:t list -> loc:location -> binder -> t list -> t -> 'a;
  pmatch    : 'a mapper -> attr:t list -> loc:location -> t -> (t * t) list -> 'a;
}

let map mapper t =
  let wrap f = f mapper ~attr:t.attr ~loc:t.loc in
  match t.term with
  | Symbol id -> wrap mapper.symbol id
  | Builtin b -> wrap mapper.builtin b
  | Colon (u, v) -> wrap mapper.colon u v
  | App (f, args) -> wrap mapper.app f args
  | Binder (b, vars, body) -> wrap mapper.binder b vars body
  | Match (e, l) -> wrap mapper.pmatch e l

let id_mapper = {
  symbol = (fun m ~attr ~loc id ->
      set_attrs (List.map (map m) attr) @@ const ~loc id);
  builtin = (fun m ~attr ~loc b ->
      set_attrs (List.map (map m) attr) @@ builtin ~loc b ());
  colon = (fun m ~attr ~loc u v ->
      set_attrs (List.map (map m) attr) @@ colon ~loc (map m u) (map m v));
  app = (fun m ~attr ~loc f args ->
      set_attrs (List.map (map m) attr) @@ apply ~loc (map m f) (List.map (map m) args));
  binder = (fun m ~attr ~loc b vars body ->
      set_attrs (List.map (map m) attr) @@ mk_bind ~loc b (List.map (map m) vars) (map m body));
  pmatch = (fun m ~attr ~loc e l ->
      set_attrs (List.map (map m) attr) @@ match_ ~loc (map m e)
        (List.map (fun (pat, body) -> (map m pat, map m body)) l));
}

let unit_mapper = {
  symbol = (fun m ~attr ~loc:_ _ -> List.iter (map m) attr);
  builtin = (fun m ~attr ~loc:_ _ -> List.iter (map m) attr);
  colon = (fun m ~attr ~loc:_ u v ->
      List.iter (map m) attr; map m u; map m v);
  app = (fun m ~attr ~loc:_ f args ->
      List.iter (map m) attr; map m f; List.iter (map m) args);
  binder = (fun m ~attr ~loc:_ _ vars body ->
      List.iter (map m) attr; List.iter (map m) vars; map m body);
  pmatch = (fun m ~attr ~loc:_ e l ->
      List.iter (map m) attr; map m e;
      List.iter (fun (pat, body) -> map m pat; map m body) l);
}
OCaml

Innovation. Community. Security.