package dolmen
A parser library
Install
Dune Dependency
Authors
Maintainers
Sources
dolmen-0.4.1.tar.gz
md5=55a97ff61dd8398e38570272ae7e3964
sha512=83f71037eb568d5449ff2d968cb50a0b105c9712e0bd29497d1f95683698f394860a11d4dee2a2a41163504e395ef068c3974901fca11894d671684fe438fc51
doc/src/dolmen.std/statement.ml.html
Source file statement.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
(* This file is free software, part of dolmen. See file "LICENSE" for more information. *) (* Type definitions *) type term = Term.t type location = ParseLocation.t type inductive = { id : Id.t; vars : term list; cstrs : (Id.t * term list) list; loc : location option; } (* Description of statements. *) type descr = | Pack of t list | Pop of int | Push of int | Reset_assertions | Plain of term | Prove of term list | Clause of term list | Antecedent of term | Consequent of term | Include of string | Set_logic of string | Get_info of string | Set_info of term | Get_option of string | Set_option of term | Def of Id.t * term | Decl of Id.t * term | Inductive of inductive | Get_proof | Get_unsat_core | Get_unsat_assumptions | Get_model | Get_value of term list | Get_assignment | Get_assertions | Echo of string | Reset | Exit (* Statements are wrapped in a record to have a location. *) and t = { id : Id.t; descr : descr; attr : term option; loc : location option; } (* Debug printing *) let rec pp_descr b = function | Pack l -> Printf.bprintf b "pack(%d):\n" (List.length l); Misc.pp_list ~pp_sep:Buffer.add_char ~sep:'\n' ~pp b l | Pop i -> Printf.bprintf b "pop: %d" i | Push i -> Printf.bprintf b "push: %d" i | Reset_assertions -> Printf.bprintf b "reset assertions" | Plain t -> Printf.bprintf b "plain: %a" Term.pp t | Prove [] -> Printf.bprintf b "Prove" | Prove l -> Printf.bprintf b "Prove assuming: %a" (Misc.pp_list ~pp_sep:Buffer.add_string ~sep:" && " ~pp:Term.pp) l | Clause l -> Printf.bprintf b "clause: %a" (Misc.pp_list ~pp_sep:Buffer.add_string ~sep:" || " ~pp:Term.pp) l | Antecedent t -> Printf.bprintf b "antecedent: %a" Term.pp t | Consequent t -> Printf.bprintf b "consequent: %a" Term.pp t | Include f -> Printf.bprintf b "include: %s" f | Set_logic s -> Printf.bprintf b "set-logic: %s" s | Get_info s -> Printf.bprintf b "get-info: %s" s | Set_info t -> Printf.bprintf b "set-info: %a" Term.pp t | Get_option s -> Printf.bprintf b "get-option: %s" s | Set_option t -> Printf.bprintf b "set-option: %a" Term.pp t | Def (id, t) -> Printf.bprintf b "def: %a = %a" Id.pp id Term.pp t | Decl (id, t) -> Printf.bprintf b "decl: %a : %a" Id.pp id Term.pp t | Inductive i -> Printf.bprintf b "Inductive(%d): %a, %a\n" (List.length i.cstrs) Id.pp i.id (Misc.pp_list ~pp_sep:Buffer.add_string ~sep:" " ~pp:Term.pp) i.vars; Misc.pp_list ~pp_sep:Buffer.add_string ~sep:"\n" ~pp:(fun b (cstr, l) -> Printf.bprintf b "%a: %a" Id.pp cstr (Misc.pp_list ~pp_sep:Buffer.add_string ~sep:" " ~pp:Term.pp) l ) b i.cstrs | Get_proof -> Printf.bprintf b "get-proof" | Get_unsat_core -> Printf.bprintf b "get-unsat-core" | Get_unsat_assumptions -> Printf.bprintf b "get-unsat-assumptions" | Get_model -> Printf.bprintf b "get-model" | Get_value l -> Printf.bprintf b "get-value(%d):\n" (List.length l); Misc.pp_list ~pp_sep:Buffer.add_string ~sep:"\n" ~pp:Term.pp b l | Get_assignment -> Printf.bprintf b "get-assignment" | Get_assertions -> Printf.bprintf b "get-assertions" | Echo s -> Printf.bprintf b "echo: %s" s | Reset -> Printf.bprintf b "reset" | Exit -> Printf.bprintf b "exit" and pp b = function { descr; _ } -> Printf.bprintf b "%a" pp_descr descr (* Pretty printing *) let rec print_descr fmt = function | Pack l -> Format.fprintf fmt "@[<hov 2>pack(%d):@ %a@]" (List.length l) (Misc.print_list ~print_sep:Format.fprintf ~sep:"@ " ~print) l | Pop i -> Format.fprintf fmt "pop: %d" i | Push i -> Format.fprintf fmt "push: %d" i | Reset_assertions -> Format.fprintf fmt "reset assertions" | Plain t -> Format.fprintf fmt "@[<hov 2>plain: %a@]" Term.print t | Prove [] -> Format.fprintf fmt "Prove" | Prove l -> Format.fprintf fmt "Prove assuming: %a" (Misc.print_list ~print_sep:Format.fprintf ~sep:" &&@ " ~print:Term.print) l | Clause l -> Format.fprintf fmt "@[<hov 2>clause:@ %a@]" (Misc.print_list ~print_sep:Format.fprintf ~sep:" ||@ " ~print:Term.print) l | Antecedent t -> Format.fprintf fmt "@[<hov 2>antecedent:@ %a@]" Term.print t | Consequent t -> Format.fprintf fmt "@[<hov 2>consequent:@ %a@]" Term.print t | Include f -> Format.fprintf fmt "@[<hov 2>include:@ %s@]" f | Set_logic s -> Format.fprintf fmt "@[<hov 2>set-logic:@ %s@]" s | Get_info s -> Format.fprintf fmt "@[<hov 2>get-info:@ %s@]" s | Set_info t -> Format.fprintf fmt "@[<hov 2>set-info:@ %a@]" Term.print t | Get_option s -> Format.fprintf fmt "@[<hov 2>get-option:@ %s@]" s | Set_option t -> Format.fprintf fmt "@[<hov 2>set-option:@ %a@]" Term.print t | Def (id, t) -> Format.fprintf fmt "@[<hov 2>def:@ %a =@ %a@]" Id.print id Term.print t | Decl (id, t) -> Format.fprintf fmt "@[<hov 2>decl:@ %a :@ %a@]" Id.print id Term.print t | Inductive i -> Format.fprintf fmt "@[<hov 2>Inductive(%d) %a@ %a@\n%a@]" (List.length i.cstrs) Id.print i.id (Misc.print_list ~print_sep:Format.fprintf ~sep:"@ " ~print:Term.print) i.vars (Misc.print_list ~print_sep:Format.fprintf ~sep:"@\n" ~print:(fun fmt (cstr, l) -> Format.fprintf fmt "%a: %a" Id.print cstr ( Misc.print_list ~print_sep:Format.fprintf ~sep:"@ " ~print:Term.print ) l)) i.cstrs | Get_proof -> Format.fprintf fmt "get-proof" | Get_unsat_core -> Format.fprintf fmt "get-unsat-core" | Get_unsat_assumptions -> Format.fprintf fmt "get-unsat-assumptions" | Get_model -> Format.fprintf fmt "get-model" | Get_value l -> Format.fprintf fmt "@[<hov 2>get-value(%d):@ %a@]" (List.length l) (Misc.print_list ~print_sep:Format.fprintf ~sep:"@ " ~print:Term.print) l | Get_assignment -> Format.fprintf fmt "get-assignment" | Get_assertions -> Format.fprintf fmt "get-assertions" | Echo s -> Format.fprintf fmt "echo: %s" s | Reset -> Format.fprintf fmt "reset" | Exit -> Format.fprintf fmt "exit" and print fmt = function { descr; _ } -> Format.fprintf fmt "%a" print_descr descr (** Annotations *) let annot = Term.apply (* Internal shortcut. *) let mk ?(id=Id.(mk decl "")) ?loc ?attr descr = { id; descr; loc; attr; } (* Pack *) let pack ?id ?loc ?attr l = mk ?id ?loc ?attr (Pack l) (* Push/Pop *) let pop ?loc i = mk ?loc (Pop i) let push ?loc i = mk ?loc (Push i) let reset_assertions ?loc () = mk ?loc Reset_assertions (* Assumptions and fact checking *) let prove ?loc () = mk ?loc (Prove []) let mk_clause ?loc ?attr l = mk ?loc ?attr (Clause l) let consequent ?loc ?attr t = mk ?loc ?attr (Consequent t) let antecedent ?loc ?attr t = mk ?loc ?attr (Antecedent t) (* Options statements *) let set_logic ?loc s = mk ?loc (Set_logic s) let get_info ?loc s = mk ?loc (Get_info s) let set_info ?loc t = mk ?loc (Set_info t) let get_option ?loc s = mk ?loc (Get_option s) let set_option ?loc t = mk ?loc (Set_option t) (* Definitions, i.e given identifier, with arguments, is equal to given term *) (* Return values *) let get_proof ?loc () = mk ?loc Get_proof let get_unsat_core ?loc () = mk ?loc Get_unsat_core let get_unsat_assumptions ?loc () = mk ?loc Get_unsat_assumptions let get_model ?loc () = mk ?loc Get_model let get_value ?loc l = mk ?loc (Get_value l) let get_assignment ?loc () = mk ?loc Get_assignment let get_assertions ?loc () = mk ?loc Get_assertions (* Scripts statement *) let echo ?loc s = mk ?loc (Echo s) let reset ?loc () = mk ?loc Reset let exit ?loc () = mk ?loc Exit (* Dimacs&iCNF wrappers *) let p_cnf ?loc nbvar nbclause = let i = Term.int ?loc (string_of_int nbvar) in let j = Term.int ?loc (string_of_int nbclause) in let attr = Term.colon ?loc i j in mk ?loc ~attr (Set_logic "dimacs") let clause ?loc l = mk_clause ?loc l let assumption ?loc l = mk ?loc (Prove l) (* Smtlib wrappers *) let check_sat ?loc l = mk ?loc (Prove l) let assert_ ?loc t = antecedent ?loc t let type_decl ?loc id n = let ty = Term.fun_ty ?loc (Misc.replicate n @@ Term.tType ()) @@ Term.tType () in mk ?loc (Decl (id, ty)) let fun_decl ?loc id l t' = let ty = Term.fun_ty ?loc l t' in mk ?loc (Decl (id, ty)) let type_def ?loc id args body = let l = List.map (fun id -> Term.colon (Term.const id) @@ Term.tType ()) args in let t = Term.lambda l body in mk ?loc (Def (id, t)) let datatypes ?loc l = let l' = List.map (fun (id, vars, cstrs) -> mk ?loc (Inductive {id; vars; cstrs; loc; }) ) l in pack ?loc l' let fun_def ?loc id args ty_ret body = let t = Term.lambda args (Term.colon body ty_ret) in mk ?loc (Def (id, t)) let funs_def_rec ?loc l = let l' = List.map (fun (id, args, ty_ret, body) -> fun_def ?loc id args ty_ret body ) l in pack ?loc l' (* Wrappers for Zf *) let zf_attr ?loc = function | None | Some [] -> None | Some l -> Some (Term.apply ?loc (Term.and_t ()) l) let import ?loc s = mk ?loc (Include s) let data ?loc ?attrs l = let attr = zf_attr ?loc attrs in mk ?loc ?attr (Pack l) let defs ?loc ?attrs l = let attr = zf_attr ?loc attrs in mk ?loc ?attr (Pack l) let rewrite ?loc ?attrs t = let attr = zf_attr ?loc attrs in antecedent ?loc ?attr (Term.add_attr (Term.const Id.rwrt_rule) t) let goal ?loc ?attrs t = let attr = zf_attr ?loc attrs in mk ?loc ?attr (Pack [ consequent ?loc t; prove ?loc (); ]) let assume ?loc ?attrs t = let attr = zf_attr ?loc attrs in antecedent ?loc ?attr t let lemma ?loc ?attrs t = let attr = zf_attr ?loc attrs in antecedent ?loc ?attr t let decl ?loc ?attrs id ty = let attr = zf_attr ?loc attrs in mk ?loc ?attr (Decl (id, ty)) let definition ?loc ?attrs s ty l = let attr = zf_attr ?loc attrs in mk ?loc ?attr (Pack ( decl ?loc s ty :: List.map (assume ?loc) l )) let inductive ?loc ?attrs id vars cstrs = let attr = zf_attr ?loc attrs in mk ?loc ?attr (Inductive {id; vars; cstrs; loc; }) (* Wrappers for tptp *) let include_ ?loc s l = let attr = Term.apply ?loc (Term.and_t ()) (List.map Term.const l) in mk ?loc ~attr (Include s) let tptp ?loc ?annot id role body = let aux t = match annot with | None -> t | Some t' -> Term.colon t t' in let attr = aux (Term.apply (Term.const Id.tptp_role) [Term.const Id.(mk Attr role)]) in let descr = match role with | "axiom" | "hypothesis" | "definition" | "lemma" | "theorem" | "assumption" | "negated_conjecture" -> begin match body with | `Term t -> Antecedent t | `Clause (_, l) -> Clause l end | "conjecture" -> begin match body with | `Term t -> Consequent t | `Clause _ -> Format.eprintf "WARNING: conjecture in a cnf context"; Pack [] end | "type" -> begin match body with | `Term { Term.term = Term.Colon ({ Term.term = Term.Symbol s; _ }, ty ) ; _ } -> Decl (s, ty) | _ -> Format.eprintf "WARNING: unexpected type declaration@."; Pack [] end | "plain" -> begin match body with | `Term t | `Clause (t, _) -> Plain t end | "unknown" | "fi_domain" | "fi_functors" | "fi_predicates" -> Pack [] | _ -> Format.eprintf "WARNING: unknown tptp formula role: '%s'@." role; Pack [] in mk ~id ?loc ~attr descr let tpi ?loc ?annot id role t = tptp ?loc ?annot id role (`Term t) let thf ?loc ?annot id role t = tptp ?loc ?annot id role (`Term t) let tff ?loc ?annot id role t = tptp ?loc ?annot id role (`Term t) let fof ?loc ?annot id role t = tptp ?loc ?annot id role (`Term t) let cnf ?loc ?annot id role t = let l = match t with | { Term.term = Term.App ({ Term.term = Term.Builtin Term.Or; _ }, l); _ } -> l | _ -> [t] in tptp ?loc ?annot id role (`Clause (t, l)) (* normalization *) let normalize_inductive f i = { i with cstrs = List.map (fun (x, l) -> (x, List.map f l)) i.cstrs; } let rec normalize_descr f = function | Pack l -> Pack (List.map (normalize f) l) | Plain t -> Plain (f t) | Prove l -> Prove (List.map f l) | Clause l -> Clause (List.map f l) | Antecedent t -> Antecedent (f t) | Consequent t -> Consequent (f t) | Set_info t -> Set_info (f t) | Set_option t -> Set_option (f t) | Def (id, t) -> Def (id, f t) | Decl (id, t) -> Decl (id, f t) | Inductive i -> Inductive (normalize_inductive f i) | Get_value l -> Get_value (List.map f l) | descr -> descr and normalize f s = { s with attr = (match s.attr with | None -> None | Some t -> Some (f t)); descr = normalize_descr f s.descr; }
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>