package current

  1. Overview
  2. Docs

Source file analysis.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
module Env = Map.Make(String)

module IntSet = Set.Make(struct type t = int let compare = compare end)
module IntMap = Map.Make(struct type t = int let compare = compare end)

module Make (Meta : sig type t end) = struct
  module Node = Node.Make(Meta)
  open Node

  let pp f x =
    let seen = ref Id.Set.empty in
    let rec aux f t =
      let Term t = t in
      if Id.Set.mem t.id !seen then
        Fmt.string f "..."
      else (
        seen := Id.Set.add t.id !seen;
        match t.ty with
        | Constant None ->
          begin match t.bind with
            | Some ctx -> aux f ctx
            | None ->
              match Current_incr.observe t.v with
              | Error (_, `Active _) -> Fmt.string f "(input)"
              | _ -> Fmt.string f "(const)"
          end
        | Constant (Some l) -> Fmt.string f l
        | Map_input { source = _; info = Ok label } -> Fmt.string f label
        | Map_input { source = _; info = Error `Blocked } -> Fmt.string f "(blocked)"
        | Map_input { source = _; info = Error `Empty_list } -> Fmt.string f "(empty list)"
        | Opt_input { source } -> Fmt.pf f "[%a]" aux source
        | Bind_in (x, name) -> Fmt.pf f "%a@;>>=@;%s" aux x name
        | Bind_out x -> aux f (Current_incr.observe x)
        | Primitive {x; info; meta = _ } -> Fmt.pf f "%a@;>>=@;%s" aux x info
        | Pair (x, y) -> Fmt.pf f "@[<v>@[%a@]@,||@,@[%a@]@]" aux x aux y
        | Gate_on { ctrl; value } -> Fmt.pf f "%a@;>>@;gate (@[%a@])" aux value aux ctrl
        | List_map { items; output; label = _ } -> Fmt.pf f "%a@;>>@;list_map (@[%a@])" aux items aux (Current_incr.observe output)
        | Option_map { item; output; label = _ } -> Fmt.pf f "%a@;>>@;option_map (@[%a@])" aux item aux (Current_incr.observe output)
        | State x -> Fmt.pf f "state(@[%a@])" aux x.source
        | Catch x -> Fmt.pf f "catch(@[%a@])" aux x.source
        | Map x -> aux f x
        | Collapse x -> aux f x.output
      )
    in
    aux f (Term x)

  module Node_set = Set.Make(struct type t = int let compare = compare end)

  module Out_node = struct
    (* Information about one node in the OCurrent graph. *)

    type t = {
      outputs : Node_set.t;
      (* Normally, this will be a singleton set containing just the node being
         considered. However, sometimes we choose to hide nodes. For example,
         if we have a node C representing the pair of A and B then we don't bother
         adding a dot node for C. Instead, C is represented by an `Out_node` with
         `outputs = {A, B}`. Anything that takes input from C will instead take
         input directly from both A and B. *)

      trans : Node_set.t;
      (* The set of nodes which must be resolved for this node to be resolved,
         excluding [outputs]. For example, in the graph `A -> B -> C`:

         trans(A) = {}
         trans(B) = {A}
         trans(C) = {A, B}

         This is used to hide edges that are implied by other edges, to simplify
         the output. *)
    }

    let empty = {
      outputs = Node_set.empty;
      trans = Node_set.empty;
    }

    let is_empty t = Node_set.is_empty t.outputs

(*
    let pp_set f ns =
      Fmt.(list ~sep:(unit ",") int) f (Node_set.elements ns)

    let pp f {outputs; trans} =
      Fmt.pf f "%a(%a)" pp_set outputs pp_set trans
*)

    (* The union of A and B's outputs and transitive dependencies,
       except that we remove outputs that are already dependencies
       of the other branch. *)
    let union a b =
      let outputs =
        Node_set.union
          (Node_set.filter (fun x -> not (Node_set.mem x b.trans)) a.outputs)
          (Node_set.filter (fun x -> not (Node_set.mem x a.trans)) b.outputs)
      in
      let outputs =
        if Node_set.is_empty outputs then a.outputs
        else outputs
      in {
        outputs;
        trans = Node_set.union a.trans b.trans;
      }

    (* Connect [t]'s outputs using [make_edge] to connect to something. *)
    let connect make_edge t =
      Node_set.iter make_edge t.outputs

    (* An ordinary node, represented by a single box in the diagram. *)
    let singleton ~deps i = {
      outputs = Node_set.singleton i;
      trans = Node_set.union deps.outputs deps.trans;
    }
  end

  let colour_of_activity = function
    | `Waiting_for_confirmation -> "#4975ff"
    | `Ready -> "#ffff00"
    | `Running -> "#ffa500"

  let pp_dot ~env ~collapse_link ~job_info f x =
    let env = Env.of_seq (List.to_seq env) in
    let next = ref 0 in
    let seen : Out_node.t Id.Map.t ref = ref Id.Map.empty in
    let pending_edges = ref [] in
    let edge_to ?style ?color b a = pending_edges := (style, color, a, b) :: !pending_edges in
    let flush_pending () =
      !pending_edges |> List.iter (fun (style, color, a, b) -> Dot.edge f ?style ?color a b);
      pending_edges := []
    in
    let rec aux (Term t) =
      match Id.Map.find_opt t.id !seen with
      | Some x -> x
      | None ->
        let i = !next in
        incr next;
        let ctx =
          match t.bind with
          | None -> Out_node.empty
          | Some c -> aux c
        in
        let v = Current_incr.observe t.v in
        let error_from_self =
          match v with
          | Ok _ -> false
          | Error (id, _) when Id.equal id t.id -> true
          | Error (id, _) ->
            match t.ty with
            | Collapse { input = Term input; _} ->
              (* The error isn't from us. but this is a collapsed node. If we're just propagating
                 an error from our input then keep that, but report errors from within the collapsed
                 group as from us. *)
              begin match Current_incr.observe input.v with
                | Error (orig_id, _) -> not (Id.equal id orig_id)
                | Ok _ -> true
              end
            | _ -> false
        in
        let bg =
          match v with
          | Ok _ -> "#90ee90"
          | Error _ when not error_from_self -> "#d3d3d3" (* Blocked *)
          | Error (_, `Active x) -> colour_of_activity x
          | Error (_, `Msg _) -> "#ff4500"
        in
        let tooltip =
          match v with
          | Error (_, `Msg msg) when error_from_self -> Some msg
          | _ -> None
        in
        let node ?(bg=bg) ?url ?shape idx label =
          (* Add a marker to the node if it is for a job (i.e. can be clicked
             through to reach a build log. *)
          let suffix =
            match url with
            | None -> ""
            | Some _ -> begin
              match v with
              | Ok _ -> " &#x2714;" (* Checkmark *)
              | Error _ when not error_from_self -> "" (* Blocked *)
              | Error (_, `Active _) -> " &#x2026;" (* Ellipsis *)
              | Error (_, `Msg _) when error_from_self -> " &#x2717;" (* Cross *)
              | _ -> ""
              end
          in
          Dot.node ~style:"filled" ?shape ~bg ?tooltip ?url f idx (label ^ suffix) in
        let outputs =
          match t.ty with
          | Constant (Some l) -> node i l; Out_node.singleton ~deps:ctx i
          | Constant None when Out_node.is_empty ctx ->
            if Result.is_ok v then ctx
            else (
              node i (if error_from_self then "(const)" else "(input)");
              Out_node.singleton ~deps:ctx i
            )
          | Constant None -> ctx
          | Map_input { source; info } ->
            let label =
              match info with
              | Ok l -> l
              | Error `Blocked -> "(each item)"
              | Error `Empty_list -> "(empty list)"
            in
            node i label;
            let source = aux source in
            Out_node.connect (edge_to i) source;
            let deps = Out_node.union source ctx in
            Out_node.singleton ~deps i
          | Opt_input { source } ->
            aux source
          | Bind_in (x, name) ->
            let inputs =
              match t.ty with
              | Constant None -> Out_node.empty
              | _ -> aux x
            in
            node i name;
            let all_inputs = Out_node.union inputs ctx in
            Out_node.connect (edge_to i) all_inputs;
            Out_node.singleton ~deps:all_inputs i
          | Bind_out x -> aux (Current_incr.observe x)
          | Primitive {x; info; meta} ->
            let inputs =
              match x with
              | Term { ty = Constant None; _ } -> Out_node.empty
              | _ -> aux x
            in
            let update_status, url =
              match Current_incr.observe meta with
              | None -> None, None
              | Some id -> job_info id
            in
            let bg = update_status |> Option.map (fun s ->
                let up_bg = colour_of_activity s in
                Printf.sprintf "%s:%s" up_bg bg
              )
            in
            node ?bg ?url i info;
            let all_inputs = Out_node.union inputs ctx in
            Out_node.connect (edge_to i) all_inputs;
            Out_node.singleton ~deps:all_inputs i
          | Pair (x, y) ->
            Out_node.union (aux x) (aux y) |> Out_node.union ctx
          | Gate_on { ctrl; value } ->
            let ctrls = aux ctrl in
            let values = aux value in
            node i "" ~shape:"circle";
            ctrls |> Out_node.connect (edge_to i ~style:"dashed");
            let data_inputs = Out_node.union values ctx in
            Out_node.connect (edge_to i) data_inputs;
            let deps = Out_node.(union ctrls data_inputs) in
            Out_node.singleton ~deps i
          | Catch { source; hidden = true }
          | State { source; hidden = true } ->
            aux source
          | State { source; hidden = false } ->
            let inputs = aux source in
            node i "state";
            Out_node.connect (edge_to i) inputs;
            (* Because a state node will be ready even when its inputs aren't, we shouldn't
               remove dependencies just because they're also dependencies of a state node.
               e.g. setting a GitHub status depends on knowing which commit is to be tested
               and the state of the build. We can know the state of the build (pending) without
               yet knowing the commit. So the set_state node can't run even though its
               state input is ready and transitively depends on knowing the commit. *)
            Out_node.singleton ~deps:Out_node.empty i
          | Catch { source; hidden = false } ->
            let inputs = aux source in
            node i "catch";
            let all_inputs = Out_node.union inputs ctx in
            Out_node.connect (edge_to i) all_inputs;
            Out_node.singleton ~deps:all_inputs i
          | Map x ->
            let inputs = aux x in
            begin match v with
              | Error (_, `Msg _) when error_from_self ->
                (* Normally, we don't show separate boxes for map functions.
                   But we do if one fails. *)
                node i "map";
                let all_inputs = Out_node.union inputs ctx in
                Out_node.connect (edge_to i) all_inputs;
                Out_node.singleton ~deps:all_inputs i
              | _ ->
                aux x
            end
          | List_map { items; output; label } ->
            ignore (aux items);
            Dot.begin_cluster f ?label i;
            let outputs = aux (Current_incr.observe output) in
            Dot.end_cluster f;
            outputs
          | Option_map { item; output; label } ->
            ignore (aux item);
            Dot.begin_cluster f ?label i;
            Dot.pp_option f ("style", "dotted");
            let outputs = aux (Current_incr.observe output) in
            Dot.end_cluster f;
            outputs
          | Collapse { key; value; input; output } ->
            if Env.find_opt key env = Some value then aux output
            else (
              let inputs = aux input in
              let all_inputs = Out_node.union inputs ctx in
              let url = collapse_link ~k:key ~v:value in
              node ?url i "+";
              Out_node.connect (edge_to i) all_inputs;
              Out_node.singleton ~deps:all_inputs i
            )
        in
        seen := Id.Map.add t.id outputs !seen;
        outputs
    in
    Dot.digraph f ~fontname:"ui-system,sans-serif" "pipeline";
    let _ = aux (Term x) in
    flush_pending ();
    Fmt.pf f "}@]@."

  (* This is similar to [pp_dot], except that for each call to [node] we call [count] instead. *)
  let stat x =
    let seen : Out_node.t Id.Map.t ref = ref Id.Map.empty in
    let next = ref 0 in
    let ok = ref 0 in
    let waiting_for_confirmation = ref 0 in
    let ready = ref 0 in
    let running = ref 0 in
    let failed = ref 0 in
    let blocked = ref 0 in
    let rec aux (Term t) =
      match Id.Map.find_opt t.id !seen with
      | Some x -> x
      | None ->
        let i = !next in
        incr next;
        let ctx =
          match t.bind with
          | None -> Out_node.empty
          | Some c -> aux c
        in
        let v = Current_incr.observe t.v in
        let error_from_self =
          match v with
          | Error (id, _) -> Id.equal id t.id
          | Ok _ -> false
        in
        let count () =
          match v with
          | Ok _ -> incr ok
          | _ when not error_from_self -> incr blocked
          | Error (_, `Active `Waiting_for_confirmation) -> incr waiting_for_confirmation
          | Error (_, `Active `Ready) -> incr ready
          | Error (_, `Active `Running) -> incr running
          | Error (_, `Msg _) -> incr failed
        in
        let outputs =
          match t.ty with
          | Constant (Some _) -> count (); Out_node.singleton ~deps:ctx i
          | Constant None when Out_node.is_empty ctx ->
            if Result.is_ok v then ctx
            else (
              count ();
              Out_node.singleton ~deps:ctx i
            )
          | Constant None -> ctx
          | Map_input { source; info = _ } ->
            count ();
            let source = aux source in
            let deps = Out_node.union source ctx in
            Out_node.singleton ~deps i
          | Opt_input { source } ->
            aux source
          | Bind_in (x, _name) ->
            let inputs =
              match t.ty with
              | Constant None -> Out_node.empty
              | _ -> aux x
            in
            count ();
            let all_inputs = Out_node.union inputs ctx in
            Out_node.singleton ~deps:all_inputs i
          | Bind_out x -> aux (Current_incr.observe x)
          | Primitive {x; info = _; meta = _} ->
            let inputs =
              match x with
              | Term { ty = Constant None; _ } -> Out_node.empty
              | _ -> aux x
            in
            count ();
            let all_inputs = Out_node.union inputs ctx in
            Out_node.singleton ~deps:all_inputs i
          | Pair (x, y) ->
            Out_node.union (aux x) (aux y) |> Out_node.union ctx
          | Gate_on { ctrl; value } ->
            count ();
            let ctrls = aux ctrl in
            let values = aux value in
            let data_inputs = Out_node.union values ctx in
            let deps = Out_node.(union ctrls data_inputs) in
            Out_node.singleton ~deps i
          | State { source; hidden } ->
            let _ : Out_node.t = aux source in
            if not hidden then count ();
            Out_node.singleton ~deps:Out_node.empty i
          | Catch { source; hidden } ->
            let inputs = aux source in
            if not hidden then count ();
            let all_inputs = Out_node.union inputs ctx in
            Out_node.singleton ~deps:all_inputs i
          | Map x ->
            let inputs = aux x in
            let all_inputs = Out_node.union inputs ctx in
            begin match v with
              | Error (_, `Msg _) when error_from_self ->
                count ();
                Out_node.singleton ~deps:all_inputs i
              | _ ->
                aux x
            end
          | List_map { items; output; label = _ } ->
            ignore (aux items);
            aux (Current_incr.observe output)
          | Option_map { item; output; label = _ } ->
            ignore (aux item);
            aux (Current_incr.observe output)
          | Collapse x ->
            aux x.output
        in
        seen := Id.Map.add t.id outputs !seen;
        outputs
    in
    ignore (aux (Term x));
    {
      S.ok = !ok;
      waiting_for_confirmation = !waiting_for_confirmation;
      ready = !ready;
      running = !running;
      failed = !failed;
      blocked = !blocked;
    }
end
OCaml

Innovation. Community. Security.