package core_kernel
Industrial strength alternative to OCaml's standard library
Install
Dune Dependency
Authors
Maintainers
Sources
core_kernel-v0.16.0.tar.gz
sha256=e37370bad978cfb71fdaf2b1a25ab1506b98ef0b91e0dbd189ffd9d853245ce2
doc/src/core_kernel.vec/vec.ml.html
Source file vec.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
open! Core module With_integer_index = struct (* Kernel hides away Obj-handling. *) module Kernel : sig type 'a t val length : (_ t[@local]) -> int val capacity : _ t -> int val create : ?initial_capacity:int -> unit -> _ t val unsafe_create_uninitialized : len:int -> 'a t val init : int -> f:((int -> 'a)[@local]) -> 'a t val unsafe_get : 'a t -> int -> 'a val unsafe_set : 'a t -> int -> 'a -> unit val unsafe_blit : src:('a t[@local]) -> src_pos:int -> dst:('a t[@local]) -> dst_pos:int -> len:int -> unit val invariant : 'a Invariant.t -> 'a t Invariant.t val max_index : _ t -> int val grow_capacity_once : _ t -> unit val grow_capacity_to_at_least : _ t -> capacity:int -> unit val unsafe_clear_pointer_at : _ t -> int -> unit val set_length : _ t -> int -> unit val copy : 'a t -> 'a t val sort : ?pos:int -> ?len:int -> 'a t -> compare:('a -> 'a -> int) -> unit module With_structure_details : sig type nonrec 'a t = 'a t [@@deriving sexp_of] end end = struct type 'a t = { mutable arr : Obj.t Uniform_array.t ; mutable length : int ; mutable capacity : int (** Invariant: [capacity = Uniform_array.length arr]. We maintain it here to eliminate an indirection when accessing long arrays. *) } [@@deriving fields] let length t = t.length let check_capacity capacity = if capacity < 0 then invalid_argf "Vec: negative capacity %d" capacity () ;; (* [initial_capacity] is mostly arbitrary, but it does make our array take one header word + 7 data words = 8 words * 8 bytes = 64 bytes = one cacheline by default. (Of course, there's no alignment guarantee.) *) let create ?(initial_capacity = 7) () = check_capacity initial_capacity; { arr = Uniform_array.unsafe_create_uninitialized ~len:initial_capacity ; length = 0 ; capacity = initial_capacity } ;; let unsafe_create_uninitialized ~len:n = check_capacity n; { arr = Uniform_array.unsafe_create_uninitialized ~len:n; length = n; capacity = n } ;; let init n ~f = check_capacity n; { arr = Uniform_array.init n ~f:(fun i -> f i |> Obj.magic) ; length = n ; capacity = n } ;; let copy t = { arr = Uniform_array.copy t.arr; length = t.length; capacity = t.capacity } ;; let[@inline always] unsafe_get (type a) (t : a t) i : a = Uniform_array.unsafe_get t.arr i |> Obj.magic ;; let[@inline always] unsafe_set (type a) (t : a t) i (element : a) = Uniform_array.unsafe_set t.arr i (Obj.repr element) ;; let[@inline always] unsafe_blit ~src ~src_pos ~dst ~dst_pos ~len = Uniform_array.unsafe_blit ~src:src.arr ~src_pos ~dst:dst.arr ~dst_pos ~len ;; module With_structure_details = struct type nonrec 'a t = 'a t let sexp_of_t (type a) (sexp_of_a : a -> Sexp.t) (t : a t) = let { arr; length; capacity } = t in let elements = Uniform_array.init (Uniform_array.length arr) ~f:(fun i -> let element = Uniform_array.get arr i in (* Only the first [length] elements can safely be given to [sexp_of_a]. *) if i < length then element |> Obj.magic |> sexp_of_a else ( let imm : int = Obj.magic element in Sexp.Atom (sprintf "_%d" imm))) in [%sexp { elements : Sexp.t Uniform_array.t; length : int; capacity : int }] ;; end let invariant (type a) (a_inv : a Invariant.t) (t : a t) = Invariant.invariant [%here] t [%sexp_of: _ With_structure_details.t] (fun () -> let { capacity; length; arr } = t in if capacity <> Uniform_array.length t.arr then raise_s [%message "capacity should equal Option_array length" (capacity : int) (Uniform_array.length t.arr : int)]; if capacity < 0 then raise_s [%message "negative capacity" (capacity : int)]; if length > capacity then raise_s [%message "length shouldn't be more than capacity" (length : int) (capacity : int)]; for pos = 0 to length - 1 do a_inv (Uniform_array.get arr pos |> Obj.magic) done; for pos = length to capacity - 1 do assert (Uniform_array.get arr pos |> Obj.is_int) done) ;; let[@inline always] max_index t = t.length - 1 let grow_capacity_to_exactly t ~capacity = let arr = Uniform_array.unsafe_create_uninitialized ~len:capacity in for i = 0 to max_index t do Uniform_array.unsafe_set arr i (Uniform_array.unsafe_get t.arr i) done; t.arr <- arr; t.capacity <- capacity ;; let growth_factor = 2 let grow_capacity_once t = grow_capacity_to_exactly t ~capacity:(Int.max 1 t.capacity * growth_factor) ;; let grow_capacity_to_at_least t ~capacity:target_capacity = assert (growth_factor = 2); if t.capacity < target_capacity then grow_capacity_to_exactly t ~capacity:(Int.ceil_pow2 (Int.max 1 target_capacity)) ;; let[@inline always] unsafe_clear_pointer_at t pos = Uniform_array.unsafe_clear_if_pointer t.arr pos ;; let sort (type a) ?pos ?len t ~(compare : a -> a -> int) = let compare : Obj.t -> Obj.t -> int = Obj.magic compare in (* [Uniform_array] checks this but has an overestimate of our length. *) let pos, len = Ordered_collection_common.get_pos_len_exn () ?pos ?len ~total_length:(length t) in Uniform_array.sort ~pos ~len t.arr ~compare ;; end include Kernel let is_sorted t ~compare = (* This is a copy-paste from [Array.is_sorted]. *) let i = ref (length t - 1) in let result = ref true in while !i > 0 && !result do let elt_i = unsafe_get t !i in let elt_i_minus_1 = unsafe_get t (!i - 1) in if compare elt_i_minus_1 elt_i > 0 then result := false; decr i done; !result ;; let next_free_index = length let[@cold] raise__bad_index t i ~op = raise_s [%message "tried to access vec out of bounds" (t : _ With_structure_details.t) (i : int) (op : string)] ;; let[@inline always] check_index t i ~op = if i < 0 || i >= length t then raise__bad_index t i ~op ;; let get t i = check_index t i ~op:"get"; unsafe_get t i ;; let maybe_get t i = if i < 0 || i >= length t then None else Some (unsafe_get t i) let set t i element = check_index t i ~op:"set"; unsafe_set t i element ;; let[@inline always] push_back__we_know_we_have_space t element = let length = length t in unsafe_set t length element; set_length t (length + 1) ;; let push_back_index t element = let length = length t in if length = capacity t then grow_capacity_once t; push_back__we_know_we_have_space t element; length ;; let[@inline always] push_back t element = let (_ : int) = push_back_index t element in () ;; let remove_exn t i = if i < 0 || i >= length t then raise__bad_index t i ~op:"remove_exn"; let new_length = length t - 1 in (* As per the ocaml stdlib documentation, blitting with src and dst overlapping is safe. https://github.com/ocaml-flambda/flambda-backend/blob/main/ocaml/stdlib/array.mli#L143 *) unsafe_blit ~src:t ~src_pos:(i + 1) ~dst:t ~dst_pos:i ~len:(length t - i - 1); set_length t new_length ;; let[@inline always] unsafe_peek_back_exn t = unsafe_get t (max_index t) let peek_back_exn t = let length = length t in if length <= 0 then raise__bad_index t length ~op:"peek_back"; unsafe_peek_back_exn t ;; let peek_back t = if length t <= 0 then None else Some (unsafe_peek_back_exn t) let[@inline always] pop_back_unit_exn t = let pos = max_index t in (* Don't leak the value. *) unsafe_clear_pointer_at t pos; set_length t pos ;; let pop_back_exn t = let e = peek_back_exn t in pop_back_unit_exn t; e ;; let grow_to t ~len ~default = if len > length t then ( grow_capacity_to_at_least t ~capacity:len; for i = length t to len - 1 do unsafe_set t i default done; set_length t len) ;; let shrink_to t ~len = if len < 0 then raise__bad_index t len ~op:"shrink_to" else if len < length t then ( for i = len to max_index t do unsafe_clear_pointer_at t i done; set_length t len) ;; let iteri t ~f = for i = 0 to max_index t do f i (unsafe_get t i) done ;; let iter t ~f = for i = 0 to max_index t do f (unsafe_get t i) done ;; let to_list t = let result = ref [] in for i = max_index t downto 0 do result := unsafe_get t i :: !result done; !result ;; let to_alist t = let result = ref [] in for i = max_index t downto 0 do result := (i, unsafe_get t i) :: !result done; !result ;; let of_list xs = let t = create ~initial_capacity:(List.length xs) () in List.iter xs ~f:(push_back t); t ;; let of_array arr = init (Array.length arr) ~f:(fun i -> Array.get arr i) let fold t ~init ~f = let r = ref init in for i = 0 to max_index t do r := f !r (unsafe_get t i) done; !r ;; include Blit.Make1 (struct type nonrec 'a t = 'a t let create_like ~len _t = (* Note that even though we [unsafe_create_uninitialized], every time this function is called, the [Vec] is immediately blitted with valid values. *) Kernel.unsafe_create_uninitialized ~len ;; let length = length let unsafe_blit = unsafe_blit end) (** Returns the length of the longest prefix for which [f] is true. *) let take_while_len t ~f:(f [@local]) = let rec loop i = if i >= length t || not (f (get t i)) then i else (loop [@tailcall]) (i + 1) in loop 0 [@nontail] ;; let take_while t ~f = let len = take_while_len t ~f in sub t ~pos:0 ~len ;; module Inplace = struct let sub t ~pos ~len = Ordered_collection_common.check_pos_len_exn ~pos ~len ~total_length:(length t); if pos <> 0 then blit ~src:t ~src_pos:pos ~dst:t ~dst_pos:0 ~len; shrink_to t ~len ;; let take_while t ~f = let to_len = take_while_len t ~f in shrink_to t ~len:to_len ;; let filter t ~f = let dest = ref 0 in for i = 0 to max_index t do let x = unsafe_get t i in if f x then ( if !dest < i then unsafe_set t !dest x; incr dest) done; let dest = !dest in shrink_to t ~len:dest ;; let map t ~f = for i = 0 to max_index t do unsafe_set t i (f (unsafe_get t i)) done ;; let mapi t ~f = for i = 0 to max_index t do unsafe_set t i (f i (unsafe_get t i)) done ;; end let rec forall2__same_length t1 t2 ~f i length = if i >= length then true else f (unsafe_get t1 i) (unsafe_get t2 i) && forall2__same_length t1 t2 ~f (i + 1) length ;; let equal equal t t' = if length t <> length t' then false else forall2__same_length t t' ~f:equal 0 (length t) ;; let clear t = if length t > 0 then shrink_to t ~len:0 let sexp_of_t (type a) (sexp_of_a : a -> Sexp.t) t = let t = to_list t in [%sexp (t : a list)] ;; let is_empty t = length t = 0 let exists t ~f = let i = ref 0 in let n = length t in let result = ref false in while !i < n && not !result do if f (unsafe_get t !i) then result := true else incr i done; !result ;; let for_all t ~f = let i = ref 0 in let n = length t in let result = ref true in while !i < n && !result do if f (unsafe_get t !i) then incr i else result := false done; !result ;; let mem t a ~equal = (exists [@inlined hint]) t ~f:(equal a) [@nontail] let count t ~f = Container.count ~fold t ~f let sum module_ t ~f = Container.sum ~fold module_ t ~f (* The code for [find] and [find_exn] would be simpler (wouldn't involve threading through [max_index]) if we iterated backward, but we iterate forward to be consistent with other containers. *) let rec find' t ~f ~max_index i = if i > max_index then None else ( let x = unsafe_get t i in if f x then Some x else find' t ~f ~max_index (i + 1)) ;; let[@cold] raise__not_found () = raise (Base.Not_found_s [%message "Vec.find_exn: not found"]) ;; let rec find_exn' t ~f ~max_index i = if i > max_index then raise__not_found () else ( let x = unsafe_get t i in if f x then x else find_exn' t ~f ~max_index (i + 1)) ;; let find t ~f = find' t ~f ~max_index:(max_index t) 0 let find_exn t ~f = find_exn' t ~f ~max_index:(max_index t) 0 let rec findi' t ~f ~max_index i = if i > max_index then None else ( let x = unsafe_get t i in if f x then Some (i, x) else findi' t ~f ~max_index (i + 1)) ;; let findi t ~f = findi' t ~f ~max_index:(max_index t) 0 let find_and_remove t ~f = match findi t ~f with | None -> None | Some (i, found) -> remove_exn t i; Some found ;; let rec find_map' t ~f ~max_index i = if i > max_index then None else ( match f (unsafe_get t i) with | None -> find_map' t ~f ~max_index (i + 1) | some -> some) ;; let find_map t ~f = find_map' t ~f ~max_index:(max_index t) 0 let rec fold_result' t ~f ~acc ~max_index i = if i > max_index then Ok acc else ( match f acc (unsafe_get t i) with | Ok acc -> fold_result' t ~f ~max_index (i + 1) ~acc | err -> err) ;; let fold_result t ~init ~f = fold_result' t ~f ~acc:init ~max_index:(max_index t) 0 let rec fold_until' t ~f ~acc ~finish ~max_index i = if i > max_index then finish acc else ( match (f acc (unsafe_get t i) : _ Continue_or_stop.t) with | Stop s -> s | Continue acc -> fold_until' t ~f ~max_index (i + 1) ~acc ~finish) ;; let fold_until t ~init ~f ~finish = fold_until' t ~f ~acc:init ~finish ~max_index:(max_index t) 0 ;; let max_elt t ~compare = if is_empty t then None else ( let max = ref (unsafe_get t 0) in for i = 1 to max_index t do let x = unsafe_get t i in let max' = !max in max := if compare max' x < 0 then x else max' done; Some !max) ;; let min_elt t ~compare = if is_empty t then None else ( let min = ref (unsafe_get t 0) in for i = 1 to max_index t do let x = unsafe_get t i in let min' = !min in min := if compare min' x > 0 then x else min' done; Some !min) ;; let to_array t = Array.init (length t) ~f:(unsafe_get t) let t_of_sexp a_of_sexp t = of_list ([%of_sexp: a list] t) let compare cmp t1 t2 = let len1 = length t1 in let len2 = length t2 in let min_len = Int.min len1 len2 in let result = ref 0 in let i = ref 0 in while !i < min_len && !result = 0 do result := cmp (unsafe_get t1 !i) (unsafe_get t2 !i); i := !i + 1 done; if !result = 0 then Int.compare len1 len2 else !result ;; let unsafe_swap t i j = let e = unsafe_get t i in unsafe_set t i (unsafe_get t j); unsafe_set t j e ;; let swap t i j = check_index t i ~op:"swap"; check_index t j ~op:"swap"; unsafe_swap t i j ;; let swap_to_last_and_pop t i = check_index t i ~op:"swap_to_last_and_pop"; unsafe_swap t i (max_index t); pop_back_exn t ;; module Stable = struct module V1 = struct type nonrec 'a t = 'a t [@@deriving compare, sexp] include Bin_prot.Utils.Make_iterable_binable1 (struct type nonrec 'a t = 'a t type 'a el = 'a [@@deriving bin_io] let caller_identity = Bin_prot.Shape.Uuid.of_string "2ec1d047-7cf8-49bc-991b-0badd17d8359" ;; let module_name = Some "Vec" let init ~len ~next = init len ~f:(fun _ -> next ()) let iter = iter let length = length end) end end end include With_integer_index module type S = Vec_intf.S module Make (M : Intable.S) = struct include With_integer_index let[@inline always] unsafe_get t index = unsafe_get t (M.to_int_exn index) let get t index = get t (M.to_int_exn index) let maybe_get t index = maybe_get t (M.to_int_exn index) let[@inline always] unsafe_set t index = unsafe_set t (M.to_int_exn index) let set t index = set t (M.to_int_exn index) let next_free_index t = next_free_index t |> M.of_int_exn let iteri t ~f = iteri t ~f:(fun [@inline] int x -> f (M.of_int_exn int) x) [@nontail] let push_back_index t element = push_back_index t element |> M.of_int_exn let to_alist t = (* We could do: {[ to_alist t |> List.map ~f:(fun (i, x) -> M.of_int_exn i, x) ]} at the expense of an extra allocation. This is a bit more copy-pasty, but avoids that. *) let result = ref [] in for i = max_index t downto 0 do let m = M.of_int_exn i in result := (m, unsafe_get t m) :: !result done; !result ;; module Inplace = struct include Inplace let sub t ~pos ~len = sub t ~pos:(M.to_int_exn pos) ~len let mapi t ~f = mapi t ~f:(fun [@inline] int x -> f (M.of_int_exn int) x) [@nontail] end let swap t index1 index2 = swap t (M.to_int_exn index1) (M.to_int_exn index2) let swap_to_last_and_pop t index = swap_to_last_and_pop t (M.to_int_exn index) end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>