package core_kernel

  1. Overview
  2. No Docs
Industrial strength alternative to OCaml's standard library

Install

Dune Dependency

Authors

Maintainers

Sources

core_kernel-v0.16.0.tar.gz
sha256=e37370bad978cfb71fdaf2b1a25ab1506b98ef0b91e0dbd189ffd9d853245ce2

doc/src/core_kernel.pairing_heap/pairing_heap.ml.html

Source file pairing_heap.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
open! Core
module Pool = Tuple_pool
module Pointer = Pool.Pointer

(* This pool holds nodes that would be represented more traditionally as:

   {[
     type 'a t =
       | Empty
       | Heap of 'a * 'a t list ]}

   We will represent them as a left-child, right-sibling tree in a triplet
   (value * left_child * right_sibling).  The left child and all right siblings
   of the left child form a linked list representing the subheaps of a given heap:

   {v
         A
        /
       B -> C -> D -> E -> F
      /         /         /
     G         H->I->J   K->L
   v} *)

module Node : sig
  (* Exposing [private int] is a significant performance improvement, because it allows
     the compiler to skip the write barrier. *)

  type 'a t = private int

  module Id : sig
    type t

    val of_int : int -> t
    val equal : t -> t -> bool
  end

  module Pool : sig
    type 'a node = 'a t
    type 'a t

    val create : min_size:int -> 'a t
    val is_full : 'a t -> bool
    val length : 'a t -> int
    val grow : 'a t -> 'a t
    val copy : 'a t -> 'a node -> 'a node * 'a t
  end

  (** [allocate v ~pool] allocates a new node from the pool with no child or sibling *)
  val allocate : 'a -> pool:'a Pool.t -> id:Id.t -> 'a t

  (** [free t ~pool] frees [t] for reuse.  It is an error to access [t] after this. *)
  val free : 'a t -> pool:'a Pool.t -> unit

  (** a special [t] that represents the empty node *)
  val empty : unit -> 'a t

  val is_empty : 'a t -> bool
  val equal : 'a t -> 'a t -> bool

  (** [value_exn t ~pool] return the value of [t], raise if [is_empty t] *)
  val value_exn : 'a t -> pool:'a Pool.t -> 'a

  val id : 'a t -> pool:'a Pool.t -> Id.t
  val child : 'a t -> pool:'a Pool.t -> 'a t
  val sibling : 'a t -> pool:'a Pool.t -> 'a t

  (** [prev t] is either the parent of [t] or the sibling immediately left of [t] *)
  val prev : 'a t -> pool:'a Pool.t -> 'a t

  (** [add_child t ~child ~pool] Add a child to [t], preserving existing children as
      siblings of [child]. [t] and [child] should not be empty and [child] should have no
      sibling and have no prev node. *)
  val add_child : 'a t -> child:'a t -> pool:'a Pool.t -> unit

  (** disconnect and return the sibling *)
  val disconnect_sibling : 'a t -> pool:'a Pool.t -> 'a t

  (** disconnect and return the child *)
  val disconnect_child : 'a t -> pool:'a Pool.t -> 'a t

  (** [detach t ~pool] removes [t] from the tree, adjusting pointers around it. After
      [detach], [t] is the root of a standalone heap, which is detached from the original
      heap. *)
  val detach : 'a t -> pool:'a Pool.t -> unit
end = struct
  module Id = Int

  let dummy_id : Id.t = -1

  type 'a node =
    ('a, 'a node Pointer.t, 'a node Pointer.t, 'a node Pointer.t, Id.t) Pool.Slots.t5

  type 'a t = 'a node Pointer.t

  let empty = Pointer.null
  let is_empty = Pointer.is_null
  let equal = Pointer.phys_equal
  let value t ~pool = Pool.get pool t Pool.Slot.t0
  let child t ~pool = Pool.get pool t Pool.Slot.t1
  let sibling t ~pool = Pool.get pool t Pool.Slot.t2
  let prev t ~pool = Pool.get pool t Pool.Slot.t3
  let id t ~pool = Pool.get pool t Pool.Slot.t4

  (* let set_value   t v ~pool = Pool.set pool t Pool.Slot.t0 v *)
  let set_child t v ~pool = Pool.set pool t Pool.Slot.t1 v
  let set_sibling t v ~pool = Pool.set pool t Pool.Slot.t2 v
  let set_prev t v ~pool = Pool.set pool t Pool.Slot.t3 v

  let value_exn t ~pool =
    assert (not (is_empty t));
    value t ~pool
  ;;

  let allocate value ~pool ~id = Pool.new5 pool value (empty ()) (empty ()) (empty ()) id
  let free t ~pool = Pool.unsafe_free pool t

  let disconnect_sibling t ~pool =
    let sibling = sibling t ~pool in
    if not (is_empty sibling)
    then (
      set_sibling t (empty ()) ~pool;
      set_prev sibling (empty ()) ~pool);
    sibling
  ;;

  let disconnect_child t ~pool =
    let child = child t ~pool in
    if not (is_empty child)
    then (
      set_child t (empty ()) ~pool;
      set_prev child (empty ()) ~pool);
    child
  ;;

  let add_child t ~child:new_child ~pool =
    (* assertions we would make, but for speed:
       assert (not (is_empty t));
       assert (not (is_empty new_child));
       assert (is_empty (sibling new_child ~pool));
       assert (is_empty (prev new_child ~pool));
    *)
    let current_child = disconnect_child t ~pool in
    (* add [new_child] to the list of [t]'s children (which may be empty) *)
    set_sibling new_child current_child ~pool;
    if not (is_empty current_child) then set_prev current_child new_child ~pool;
    set_child t new_child ~pool;
    set_prev new_child t ~pool
  ;;

  let detach t ~pool =
    if not (is_empty t)
    then (
      let prev = prev t ~pool in
      if not (is_empty prev)
      then (
        let relation_to_prev = if equal t (child prev ~pool) then `child else `sibling in
        set_prev t (empty ()) ~pool;
        let sibling = disconnect_sibling t ~pool in
        (match relation_to_prev with
         | `child -> set_child prev sibling ~pool
         | `sibling -> set_sibling prev sibling ~pool);
        if not (is_empty sibling) then set_prev sibling prev ~pool))
  ;;

  module Pool = struct
    type 'a t = 'a node Pool.t
    type nonrec 'a node = 'a node Pointer.t

    let create (type a) ~min_size:capacity : a t =
      Pool.create
        Pool.Slots.t5
        ~capacity
        ~dummy:
          ( (Obj.magic None : a)
          , Pointer.null ()
          , Pointer.null ()
          , Pointer.null ()
          , dummy_id )
    ;;

    let is_full t = Pool.is_full t
    let length t = Pool.length t
    let grow t = Pool.grow t

    let copy t start =
      let t' = create ~min_size:(Pool.capacity t) in
      let copy_node node to_visit =
        if is_empty node
        then empty (), to_visit
        else (
          (* we use the same id, but that's ok since ids should be unique per heap *)
          let new_node =
            allocate (value_exn node ~pool:t) ~pool:t' ~id:(id node ~pool:t)
          in
          let to_visit =
            (new_node, `child, child node ~pool:t)
            :: (new_node, `sibling, sibling node ~pool:t)
            :: to_visit
          in
          new_node, to_visit)
      in
      let rec loop to_visit =
        match to_visit with
        | [] -> ()
        | (node_to_update, slot, node_to_copy) :: rest ->
          let new_node, to_visit = copy_node node_to_copy rest in
          (match slot with
           | `child -> set_child node_to_update new_node ~pool:t'
           | `sibling -> set_sibling node_to_update new_node ~pool:t');
          if not (is_empty new_node) then set_prev new_node node_to_update ~pool:t';
          loop to_visit
      in
      let new_start, to_visit = copy_node start [] in
      loop to_visit;
      new_start, t'
    ;;
  end
end

type 'a t =
  { (* cmp is placed first to short-circuit polymorphic compare *)
    cmp : 'a -> 'a -> int
  ; mutable pool : 'a Node.Pool.t
  ; (* invariant:  [root] never has a sibling *)
    mutable root : 'a Node.t
  ; mutable num_of_allocated_nodes : int
  }

let invariant _ t =
  let rec loop to_visit =
    match to_visit with
    | [] -> ()
    | (node, expected_prev, maybe_parent_value) :: rest ->
      if not (Node.is_empty node)
      then (
        let this_value = Node.value_exn node ~pool:t.pool in
        assert (Node.equal (Node.prev node ~pool:t.pool) expected_prev);
        Option.iter maybe_parent_value ~f:(fun parent_value ->
          assert (t.cmp parent_value this_value <= 0));
        loop
          ((Node.child node ~pool:t.pool, node, Some this_value)
           :: (Node.sibling node ~pool:t.pool, node, maybe_parent_value)
           :: rest))
      else loop rest
  in
  assert (Node.is_empty t.root || Node.is_empty (Node.sibling t.root ~pool:t.pool));
  loop [ t.root, Node.empty (), None ]
;;

let create ?(min_size = 1) ~cmp () =
  { cmp
  ; pool = Node.Pool.create ~min_size
  ; root = Node.empty ()
  ; num_of_allocated_nodes = 0
  }
;;

let copy { cmp; pool; root; num_of_allocated_nodes } =
  let root, pool = Node.Pool.copy pool root in
  { cmp; pool; root; num_of_allocated_nodes }
;;

let allocate t v =
  if Node.Pool.is_full t.pool then t.pool <- Node.Pool.grow t.pool;
  t.num_of_allocated_nodes <- t.num_of_allocated_nodes + 1;
  Node.allocate v ~pool:t.pool ~id:(Node.Id.of_int t.num_of_allocated_nodes)
;;

(* translation:
   {[
     match root1, root2 with
     | None, h | h, None -> h
     | Some (Node (v1, children1)), Some (Node (v2, children2)) ->
       if v1 < v2
       then Some (Node (v1, root2 :: children1))
       else Some (Node (v2, root1 :: children2))
   ]}

   This function assumes neither root has a prev node (usually because the inputs come
   from [disconnect_*] or are the top of the heap or are the output of this function). *)
let merge t root1 root2 =
  if Node.is_empty root1
  then root2
  else if Node.is_empty root2
  then root1
  else (
    let add_child t node ~child =
      Node.add_child node ~pool:t.pool ~child;
      node
    in
    let v1 = Node.value_exn root1 ~pool:t.pool in
    let v2 = Node.value_exn root2 ~pool:t.pool in
    if t.cmp v1 v2 < 0
    then add_child t root1 ~child:root2
    else add_child t root2 ~child:root1)
;;

let top_exn t =
  if Node.is_empty t.root
  then failwith "Heap.top_exn called on an empty heap"
  else Node.value_exn t.root ~pool:t.pool
;;

let top t = if Node.is_empty t.root then None else Some (top_exn t)

let add_node t v =
  let node = allocate t v in
  t.root <- merge t t.root node;
  node
;;

let add t v = ignore (add_node t v : _ Node.t)

(* [merge_pairs] takes a list of heap roots and merges consecutive pairs, reducing the
   list of length n to n/2.  Then it merges the merged pairs into a single heap.  One
   intuition is that this is somewhat like building a single level of a binary tree.

   The output heap does not contain the value that was at the root of the input heap.

   We break the function into two parts.  A first stage that is willing to use limited
   stack instead of heap allocation for bookkeeping, and a second stage that shifts to
   using a list as an accumulator if we go too deep.

   This can be made tail recursive and non-allocating by starting with an empty heap and
   merging merged pairs into it. Unfortunately this "left fold" version is not what is
   described in the original paper by Fredman et al.; they specifically say that
   children should be merged together from the end of the list to the beginning of the
   list. ([merge] is not associative, so order matters.)
*)
(* translation:
   {[
     let rec loop acc = function
       | [] -> acc
       | [head] -> head :: acc
       | head :: next1 :: next2 -> loop (merge head next1 :: acc) next2
     in
     match loop [] children with
     | [] -> None
     | [h] -> Some h
     | x :: xs -> Some (List.fold xs ~init:x ~f:merge)
   ]}
*)
let allocating_merge_pairs t head =
  let rec loop acc head =
    if Node.is_empty head
    then acc
    else (
      let next1 = Node.disconnect_sibling head ~pool:t.pool in
      if Node.is_empty next1
      then head :: acc
      else (
        let next2 = Node.disconnect_sibling next1 ~pool:t.pool in
        loop (merge t head next1 :: acc) next2))
  in
  match loop [] head with
  | [] -> Node.empty ()
  | [ h ] -> h
  | x :: xs -> List.fold xs ~init:x ~f:(fun acc heap -> merge t acc heap)
;;

(* translation:
   {[
     match t.root with
     | Node (_, children) ->
       let rec loop depth children =
         if depth >= max_stack_depth
         then allocating_merge_pairs t childen
         else begin
           match children with
           | [] -> None
           | [head] -> Some head
           | head :: next1 :: next2 ->
             merge (merge head next1) (loop (depth + 1) next2)
         end
       in
       loop 0 children
   ]}
*)
let merge_pairs =
  let max_stack_depth = 1_000 in
  let rec loop t depth head =
    if depth >= max_stack_depth
    then allocating_merge_pairs t head
    else if Node.is_empty head
    then head
    else (
      let next1 = Node.disconnect_sibling head ~pool:t.pool in
      if Node.is_empty next1
      then head
      else (
        let next2 = Node.disconnect_sibling next1 ~pool:t.pool in
        (* merge the first two nodes in our list, and then merge the result with the
           result of recursively calling merge_pairs on the tail *)
        merge t (merge t head next1) (loop t (depth + 1) next2)))
  in
  fun t head -> loop t 0 head
;;

let remove_non_empty t node =
  let pool = t.pool in
  Node.detach node ~pool;
  let merged_children = merge_pairs t (Node.disconnect_child node ~pool) in
  let new_root =
    if Node.equal t.root node then merged_children else merge t t.root merged_children
  in
  Node.free node ~pool;
  t.root <- new_root
;;

let remove_top t = if not (Node.is_empty t.root) then remove_non_empty t t.root

(* Note that this is tail-recursive and that each node is visited at most 3 times (once
   for each branch of the "if"), so it takes linear time and constant space. *)
let rec remove_all_nodes_non_empty node ~pool =
  let child = Node.child node ~pool in
  let sibling = Node.sibling node ~pool in
  if not (Node.is_empty child)
  then remove_all_nodes_non_empty child ~pool
  else if not (Node.is_empty sibling)
  then remove_all_nodes_non_empty sibling ~pool
  else (
    let prev = Node.prev node ~pool in
    Node.detach node ~pool;
    Node.free node ~pool;
    if not (Node.is_empty prev) then remove_all_nodes_non_empty prev ~pool)
;;

let clear t =
  if not (Node.is_empty t.root)
  then (
    remove_all_nodes_non_empty t.root ~pool:t.pool;
    t.root <- Node.empty ())
;;

let pop_exn t =
  let r = top_exn t in
  remove_top t;
  r
;;

let pop t = if Node.is_empty t.root then None else Some (pop_exn t)

let pop_if t f =
  match top t with
  | None -> None
  | Some v ->
    if f v
    then (
      remove_top t;
      Some v)
    else None
;;

(* pairing heaps are not balanced trees, and therefore we can't rely on a balance
   property to stop ourselves from overflowing the stack. *)
let fold t ~init ~f =
  let pool = t.pool in
  let rec loop acc to_visit =
    match to_visit with
    | [] -> acc
    | node :: rest ->
      if Node.is_empty node
      then loop acc rest
      else (
        let to_visit = Node.sibling ~pool node :: Node.child ~pool node :: rest in
        loop (f acc (Node.value_exn ~pool node)) to_visit)
  in
  loop init [ t.root ] [@nontail]
;;

(* almost identical to fold, copied for speed purposes *)
let iter t ~f =
  let pool = t.pool in
  let rec loop to_visit =
    match to_visit with
    | [] -> ()
    | node :: rest ->
      if Node.is_empty node
      then loop rest
      else (
        f (Node.value_exn ~pool node);
        let to_visit = Node.sibling ~pool node :: Node.child ~pool node :: rest in
        loop to_visit)
  in
  loop [ t.root ] [@nontail]
;;

let length t = Node.Pool.length t.pool

module C = Container.Make (struct
    type nonrec 'a t = 'a t

    let fold = fold
    let iter = `Custom iter
    let length = `Custom length
  end)

let is_empty t = Node.is_empty t.root
let mem = C.mem
let exists = C.exists
let for_all = C.for_all
let count = C.count
let sum = C.sum
let find = C.find
let find_map = C.find_map
let to_list = C.to_list
let to_array = C.to_array
let min_elt = C.min_elt
let max_elt = C.max_elt
let fold_result = C.fold_result
let fold_until = C.fold_until

let of_array arr ~cmp =
  let t = create ~min_size:(Array.length arr) ~cmp () in
  Array.iter arr ~f:(fun v -> add t v);
  t
;;

let of_list l ~cmp = of_array (Array.of_list l) ~cmp
let sexp_of_t f t = Array.sexp_of_t f (to_array t |> Array.sorted_copy ~compare:t.cmp)

module Elt = struct
  type nonrec 'a t =
    { mutable node : 'a Node.t
    ; node_id : Node.Id.t
    ; heap : 'a t
    }

  (* If ids are different, it means that the node has already been removed by some
     other means (and possibly reused). *)
  let is_node_valid t = Node.Id.equal (Node.id ~pool:t.heap.pool t.node) t.node_id

  let value t =
    if is_node_valid t then Some (Node.value_exn t.node ~pool:t.heap.pool) else None
  ;;

  let value_exn t =
    if is_node_valid t
    then Node.value_exn t.node ~pool:t.heap.pool
    else failwith "Heap.value_exn: node was removed from the heap"
  ;;

  let sexp_of_t sexp_of_a t = [%sexp (value t : a option)]
end

let remove t (token : _ Elt.t) =
  if not (phys_equal t token.heap)
  then failwith "cannot remove from a different heap"
  else if not (Node.is_empty token.node)
  then (
    if Elt.is_node_valid token then remove_non_empty t token.node;
    token.node <- Node.empty ())
;;

let add_removable t v =
  let node = add_node t v in
  { Elt.node; heap = t; node_id = Node.id ~pool:t.pool node }
;;

let update t token v =
  remove t token;
  add_removable t v
;;

let find_elt =
  let rec loop t f nodes =
    match nodes with
    | [] -> None
    | node :: rest ->
      if Node.is_empty node
      then loop t f rest
      else if f (Node.value_exn node ~pool:t.pool)
      then Some { Elt.node; heap = t; node_id = Node.id ~pool:t.pool node }
      else
        loop t f (Node.sibling node ~pool:t.pool :: Node.child node ~pool:t.pool :: rest)
  in
  fun t ~f -> loop t f [ t.root ]
;;

module Unsafe = struct
  module Elt = struct
    type 'a heap = 'a t
    type 'a t = 'a Node.t

    let value t heap = Node.value_exn ~pool:heap.pool t
  end

  let add_removable = add_node
  let remove = remove_non_empty

  let update t elt v =
    remove t elt;
    add_removable t v
  ;;
end
OCaml

Innovation. Community. Security.