package containers
A modular, clean and powerful extension of the OCaml standard library
Install
Dune Dependency
Authors
Maintainers
Sources
containers-3.15.tbz
sha256=92143ceb4785ae5f8a07f3ab4ab9f6f32d31ead0536e9be4fdb818dd3c677e58
sha512=5fa80189d0e177af2302b48e72b70299d51fc36ac2019e1cbf389ff6a7f4705b10089405b5a719b3e4845b0d1349a47a967f865dc2e4e3f0d5a0167ef6c31431
doc/src/containers.pvec/containers_pvec.ml.html
Source file containers_pvec.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
(* Persistent vector structure with fast get/push/pop. We follow https://hypirion.com/musings/understanding-persistent-vector-pt-1 and following posts. *) type 'a iter = ('a -> unit) -> unit let num_bits = 4 let branching_factor = 1 lsl num_bits let bitmask = branching_factor - 1 (** Short array with functional semantics *) module A = struct open Array type 'a t = 'a array let length = length let get = get let[@inline] is_empty self = self = [||] let[@inline] return self = [| self |] let[@inline] is_full self = length self = branching_factor let equal eq a b = length a = length b && try for i = 0 to length a - 1 do if not (eq (unsafe_get a i) (unsafe_get b i)) then raise_notrace Exit done; true with Exit -> false let[@inline] push (self : _ t) x = let n = length self in if n = branching_factor then invalid_arg "Pvec.push"; let arr = Array.make (n + 1) x in Array.blit self 0 arr 0 n; arr let[@inline] pop self : _ t = let n = length self in if n = 0 then invalid_arg "Pvec.pop"; Array.sub self 0 (n - 1) let set (self : _ t) i x : _ t = if i < 0 || i > length self || i >= branching_factor then invalid_arg "Pvec.set"; if i = length self then ( (* insert in a longer copy *) let arr = Array.make (i + 1) x in Array.blit self 0 arr 0 i; arr ) else ( (* replace element at [i] in copy *) let arr = Array.copy self in arr.(i) <- x; arr ) end type 'a tree = | Empty | Node of 'a tree A.t | Leaf of 'a A.t type 'a t = { t: 'a tree; (** The 32-way tree *) size: int; (** Exact number of elements *) shift: int; (** num_bits*(depth of tree) *) tail: 'a A.t; (** Tail array, for fast push/pop *) } (* invariants: - if size>0 then [not (is_empty tail)] - all leaves in [t] are at depth shift/5 *) let empty_tree = Empty let empty = { t = empty_tree; size = 0; shift = 0; tail = [||] } let[@inline] is_empty_tree = function | Empty -> true | _ -> false let[@inline] is_empty (self : _ t) = self.size = 0 let[@inline] length (self : _ t) = self.size let[@inline] return x = { empty with size = 1; tail = A.return x } let[@inline] tail_off (self : _ t) : int = self.size - A.length self.tail let[@unroll 2] rec get_tree_ (self : 'a tree) (shift : int) i : 'a = match self with | Empty -> invalid_arg "pvec.get" | Leaf a -> A.get a (i land bitmask) | Node a -> let idx = (i lsr shift) land bitmask in get_tree_ (A.get a idx) (shift - num_bits) i let get (self : 'a t) (i : int) : 'a = if i < 0 then invalid_arg "pvec.get" else ( let tail_off = self.size - A.length self.tail in if i >= tail_off then A.get self.tail (i - tail_off) else get_tree_ self.t self.shift i ) let[@inline] get_opt self i = try Some (get self i) with Invalid_argument _ -> None (** Build a tree leading to [tail] with indices 0 at each node *) let rec build_new_tail_spine_ shift tail : _ tree = if shift = 0 then Leaf tail else Node [| build_new_tail_spine_ (shift - num_bits) tail |] let rec insert_tail_ (self : _ tree) shift i (tail : _ A.t) : _ tree = match self with | Empty -> if shift = 0 then Leaf tail else ( assert ((i lsl shift) land bitmask = 0); Node [| insert_tail_ Empty (shift - num_bits) i tail |] ) | Leaf _ -> assert false | Node a -> (* would be in the {!build_new_tail_spine_} case *) assert (i <> 0); let idx = (i lsr shift) land bitmask in let sub, must_push = if idx < A.length a then A.get a idx, false else Empty, true in let new_sub = insert_tail_ sub (shift - num_bits) i tail in let a = if must_push then A.push a new_sub else A.set a idx new_sub in Node a let[@inline never] push_full_ self x : _ t = if 1 lsl (self.shift + num_bits) = self.size - A.length self.tail then ( (* tree is full, add a level *) let t = Node [| self.t; build_new_tail_spine_ self.shift self.tail |] in { t; size = self.size + 1; shift = self.shift + num_bits; tail = [| x |] } ) else ( (* insert at the end of the current tree *) let idx = self.size - A.length self.tail in let t = insert_tail_ self.t self.shift idx self.tail in { t; size = self.size + 1; shift = self.shift; tail = [| x |] } ) let[@inline] push (self : _ t) x : _ t = if A.is_full self.tail then push_full_ self x else { self with tail = A.push self.tail x; size = self.size + 1 } let rec pop_tail_from_tree_ (self : _ tree) shift i : 'a A.t * 'a tree = match self with | Empty -> assert false | Leaf tail -> assert (shift = 0); tail, Empty | Node a -> let idx = (i lsr shift) land bitmask in let sub = A.get a idx in let tail, new_sub = pop_tail_from_tree_ sub (shift - num_bits) i in let new_tree = if is_empty_tree new_sub then ( let a = A.pop a in if A.is_empty a then Empty else Node a ) else Node (A.set a idx new_sub) in tail, new_tree let[@inline never] move_last_leaf_to_tail (self : _ t) : _ t = assert (A.length self.tail = 1); if self.size = 1 then (* back to empty *) empty else ( (* idx of the beginning of the tail *) let idx = self.size - 1 - branching_factor in let tail, t = pop_tail_from_tree_ self.t self.shift idx in let t, shift = match t with | Node [| t' |] -> (* all indices have 00000 as MSB, remove one level *) t', self.shift - num_bits | _ -> t, self.shift in { tail; size = self.size - 1; shift; t } ) let pop (self : 'a t) : 'a * 'a t = if self.size = 0 then invalid_arg "pvec.pop"; let x = A.get self.tail (A.length self.tail - 1) in let new_tail = A.pop self.tail in if A.is_empty new_tail then ( let new_self = move_last_leaf_to_tail self in x, new_self ) else ( let new_self = { self with size = self.size - 1; tail = new_tail } in x, new_self ) let pop_opt (self : 'a t) : ('a * 'a t) option = if self.size = 0 then None else Some (pop self) let[@inline] last self = if self.size = 0 then invalid_arg "pvec.last"; A.get self.tail (A.length self.tail - 1) let last_opt self = if self.size = 0 then None else Some (A.get self.tail (A.length self.tail - 1)) let drop_last self = if self.size = 0 then self else snd (pop self) let rec iter_rec_ f (self : _ tree) = match self with | Empty -> () | Leaf a -> for i = 0 to A.length a - 1 do f (Array.unsafe_get a i) done | Node a -> for i = 0 to A.length a - 1 do iter_rec_ f (Array.unsafe_get a i) done let iter f self = iter_rec_ f self.t; for i = 0 to A.length self.tail - 1 do f (Array.unsafe_get self.tail i) done let fold_left f x m = let acc = ref x in iter (fun x -> acc := f !acc x) m; !acc let rec iteri_rec_ f idx (self : _ tree) = match self with | Empty -> () | Leaf a -> for i = 0 to A.length a - 1 do let j = idx lor i in f j (Array.unsafe_get a i) done | Node a -> for i = 0 to A.length a - 1 do let idx = (idx lsl num_bits) lor i in iteri_rec_ f idx (Array.unsafe_get a i) done let iteri f (self : 'a t) : unit = iteri_rec_ f 0 self.t; let tail_off = tail_off self in for i = 0 to A.length self.tail - 1 do f (i + tail_off) (Array.unsafe_get self.tail i) done let rec iter_rev_rec_ f (self : _ tree) = match self with | Empty -> () | Leaf a -> for i = A.length a - 1 downto 0 do f (Array.unsafe_get a i) done | Node a -> for i = A.length a - 1 downto 0 do iter_rev_rec_ f (Array.unsafe_get a i) done let iter_rev f (self : 'a t) : unit = for i = A.length self.tail - 1 downto 0 do f (Array.unsafe_get self.tail i) done; iter_rev_rec_ f self.t let rec iteri_rev_rec_ f idx (self : _ tree) = match self with | Empty -> () | Leaf a -> for i = A.length a - 1 downto 0 do let j = idx lor i in f j (Array.unsafe_get a i) done | Node a -> for i = A.length a - 1 downto 0 do let idx = (idx lsl num_bits) lor i in iteri_rev_rec_ f idx (Array.unsafe_get a i) done let iteri_rev f (self : 'a t) : unit = let tail_off = tail_off self in for i = A.length self.tail - 1 downto 0 do f (i + tail_off) (Array.unsafe_get self.tail i) done; iteri_rev_rec_ f (tail_off - 1) self.t let fold_lefti f x m = let acc = ref x in iteri (fun i x -> acc := f !acc i x) m; !acc let fold_revi f x m = let acc = ref x in iteri_rev (fun i x -> acc := f !acc i x) m; !acc let fold_rev f x m = let acc = ref x in iter_rev (fun x -> acc := f !acc x) m; !acc let rec map_t f (self : _ tree) : _ tree = match self with | Empty -> Empty | Node a -> let a = Array.map (map_t f) a in Node a | Leaf a -> Leaf (Array.map f a) let map f (self : _ t) : _ t = { self with t = map_t f self.t; tail = Array.map f self.tail } let append a b = if is_empty b then a else fold_left push a b let rec equal_tree eq t1 t2 = match t1, t2 with | Empty, Empty -> true | Node a, Node b -> A.equal (equal_tree eq) a b | Leaf a, Leaf b -> A.equal eq a b | (Empty | Leaf _ | Node _), _ -> false let equal eq (a : _ t) (b : _ t) : bool = a.size = b.size && A.equal eq a.tail b.tail && equal_tree eq a.t b.t let add_list v l = List.fold_left push v l let of_list l = add_list empty l let to_list m = fold_rev (fun acc x -> x :: acc) [] m let add_iter v seq = let v = ref v in seq (fun x -> v := push !v x); !v let of_iter s = add_iter empty s let to_iter m yield = iteri (fun _ v -> yield v) m let make n x : _ t = (* TODO: probably we can optimize that? *) of_iter (fun k -> for _i = 1 to n do k x done) let rec add_seq self seq = match seq () with | Seq.Nil -> self | Seq.Cons (x, tl) -> add_seq (push self x) tl let of_seq seq = add_seq empty seq let to_seq self : _ Seq.t = let rec to_seq (stack : ('a tree * int) list) () = match stack with | [] -> Seq.Nil | (Empty, _) :: tl -> to_seq tl () | (Leaf a, i) :: tl when i < Array.length a -> Seq.Cons (A.get a i, to_seq ((Leaf a, i + 1) :: tl)) | (Leaf _, _) :: tl -> to_seq tl () | (Node a, i) :: tl when i < A.length a -> to_seq ((A.get a i, 0) :: (Node a, i + 1) :: tl) () | (Node _, _) :: tl -> to_seq tl () in to_seq [ self.t, 0; Leaf self.tail, 0 ] let choose self = if self.size = 0 then None else Some (A.get self.tail 0) module Private_ = struct type 'a printer = Format.formatter -> 'a -> unit let fpf = Format.fprintf let pp_array ppx out a = fpf out "[@[%a@]]" (Format.pp_print_list ~pp_sep:(fun out () -> Format.fprintf out ";@ ") ppx) (Array.to_list a) let rec debugtree ppx out (self : _ tree) : unit = match self with | Empty -> fpf out "()" | Leaf a -> fpf out "leaf(%a)" (pp_array ppx) a | Node a -> fpf out "node(%a)" (pp_array @@ debugtree ppx) a let debug ppx out self = fpf out "@[<v>pvec {@ size: %d; shift: %d;@ @[<2>tree:@ %a@];@ @[<2>tail:@ \ %a@]@]}" self.size self.shift (debugtree ppx) self.t (pp_array ppx) self.tail end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>