package containers
A modular, clean and powerful extension of the OCaml standard library
Install
Dune Dependency
Authors
Maintainers
Sources
containers-3.15.tbz
sha256=92143ceb4785ae5f8a07f3ab4ab9f6f32d31ead0536e9be4fdb818dd3c677e58
sha512=5fa80189d0e177af2302b48e72b70299d51fc36ac2019e1cbf389ff6a7f4705b10089405b5a719b3e4845b0d1349a47a967f865dc2e4e3f0d5a0167ef6c31431
doc/src/containers.pp/containers_pp.ml.html
Source file containers_pp.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
module B = Buffer module Int_map = Map.Make (CCInt) type 'a iter = ('a -> unit) -> unit module Out = struct type t = { char: char -> unit; (** Output a single char. The char is assumed not to be ['\n']. *) sub_string: string -> int -> int -> unit; (** Output a string slice (optim for [string]) *) string: string -> unit; (** Output a string *) newline: unit -> unit; (** Output a newline *) } let of_buffer (buf : Buffer.t) : t = let char = B.add_char buf in let sub_string = B.add_substring buf in let string = B.add_string buf in let newline () = B.add_char buf '\n' in { char; sub_string; string; newline } let[@inline] char self c = self.char c let[@inline] string self s = self.string s let[@inline] sub_string self s i len = self.sub_string s i len let[@inline] newline self = self.newline () end module Ext = struct type view = .. type 'a key = { id: int; inject: 'a -> view; extract: view -> 'a option; } type map = view Int_map.t let empty : map = Int_map.empty let get k (self : map) : _ option = try k.extract @@ Int_map.find k.id self with Not_found -> None let add k v self : map = Int_map.add k.id (k.inject v) self type 'a t = { name: string; k: 'a key; width: 'a -> int; pre: Out.t -> inside:'a option -> 'a -> unit; post: Out.t -> inside:'a option -> 'a -> unit; } let key_counter_ = ref 0 let make (type a) ?(width = fun _ -> 0) ~name ~pre ~post () : a t = let module M = struct type view += V of a end in let k = { id = !key_counter_; inject = (fun x -> M.V x); extract = (function | M.V x -> Some x | _ -> None); } in incr key_counter_; { name; k; width; pre; post } end type t = { view: view; (** Document view *) wfl: int; (** Width if flattened *) } and view = | Nil | Newline of int | Nest of int * t | Append of t * t | Char of char | Text of string | Text_sub of string * int * int | Text_zero_width of string | Group of t | Fill of { sep: t; l: t list; } | Wrap : 'a Ext.t * 'a * t -> view (* debug printer *) let rec debug out (self : t) : unit = match self.view with | Nil -> Format.fprintf out "nil" | Newline 1 -> Format.fprintf out "nl" | Newline i -> Format.fprintf out "nl(%d)" i | Nest (i, x) -> Format.fprintf out "(@[nest %d@ %a@])" i debug x | Append (a, b) -> Format.fprintf out "@[%a ^@ %a@]" debug a debug b | Char c -> Format.fprintf out "%C" c | Text s -> Format.fprintf out "%S" s | Text_zero_width s -> Format.fprintf out "(zw %S)" s | Text_sub (s, i, len) -> Format.fprintf out "%S" (String.sub s i len) | Group d -> Format.fprintf out "(@[group@ %a@])" debug d | Fill { sep = _; l } -> Format.fprintf out "(@[fill@ %a@])" (Format.pp_print_list debug) l | Wrap (e, _, d) -> Format.fprintf out "(@[ext.%s@ %a@])" e.name debug d let nil : t = { view = Nil; wfl = 0 } let newline : t = { view = Newline 1; wfl = 1 } let newline_or_spaces n : t = if n < 0 then invalid_arg "Containers_pp.newline_or_spaces"; { view = Newline n; wfl = n } let nl = newline let char c = if c = '\n' then nl else { view = Char c; wfl = 1 } let nest i x : t = match x.view with | _ when i <= 0 -> x | Nil -> nil | _ -> { view = Nest (i, x); wfl = x.wfl } let append a b : t = match a.view, b.view with | Nil, _ -> b | _, Nil -> a | _ -> { view = Append (a, b); wfl = a.wfl + b.wfl } let group d : t = match d.view with | Nil -> nil | Group _ -> d | _ -> { view = Group d; wfl = d.wfl } let ext (ext : _ Ext.t) v d : t = let wfl = d.wfl + ext.width v in { view = Wrap (ext, v, d); wfl } let ( ^ ) = append let text_sub_ s i len : t = { view = Text_sub (s, i, len); wfl = len } (* Turn [str], which contains some newlines, into a document. We make a concatenation of each line's content followed by a newline. Then we group the result so that it remains in a unified block. *) let split_text_ (str : string) : t = let cur = ref nil in let i = ref 0 in let len = String.length str in while !i < len do match String.index_from str !i '\n' with | exception Not_found -> (* last chunk *) if !i + 1 < len then cur := !cur ^ text_sub_ str !i (len - !i); i := len | j -> cur := !cur ^ text_sub_ str !i (j - !i) ^ nl; i := j + 1 done; !cur let text (str : string) : t = if str = "" then nil else if String.contains str '\n' then split_text_ str else { view = Text str; wfl = String.length str } let textpf fmt = Printf.ksprintf text fmt let textf fmt = Format.kasprintf text fmt module Flatten = struct let to_out (out : Out.t) (self : t) : unit = let rec loop (ext_map : Ext.map) (d : t) = match d.view with | Nil | Newline 0 -> () | Char c -> out.char c | Newline 1 -> out.char ' ' | Newline n -> for _i = 1 to n do out.char ' ' done | Nest (_, x) -> loop ext_map x | Append (x, y) -> loop ext_map x; loop ext_map y | Text s | Text_zero_width s -> out.string s | Text_sub (s, i, len) -> out.sub_string s i len | Group x -> loop ext_map x | Fill { sep; l } -> List.iteri (fun i x -> if i > 0 then loop ext_map sep; loop ext_map x) l | Wrap (ext, v, d) -> let inside = Ext.get ext.k ext_map in ext.pre out ~inside v; let ext_map' = Ext.add ext.k v ext_map in loop ext_map' d; ext.post out ~inside v in loop Ext.empty self let to_buffer buf (self : t) : unit = let out = Out.of_buffer buf in to_out out self let to_string self : string = let buf = Buffer.create 32 in to_buffer buf self; Buffer.contents buf end module Pretty = struct type st = { out: Out.t; width: int; ext_map: Ext.map; } (** Add [i] spaces of indentation. *) let add_indent st (i : int) = for _i = 1 to i do st.out.char ' ' done let rec pp_flatten (st : st) (self : t) : int = match self.view with | Nil | Newline 0 -> 0 | Char c -> st.out.char c; 1 | Newline n -> for _i = 1 to n do st.out.char ' ' done; n | Nest (_i, x) -> pp_flatten st x | Append (x, y) -> let n = pp_flatten st x in n + pp_flatten st y | Text s -> st.out.string s; String.length s | Text_zero_width s -> st.out.string s; 0 | Text_sub (s, i, len) -> st.out.sub_string s i len; len | Group x -> pp_flatten st x | Fill { sep; l } -> (* print separated by spaces *) let n = ref 0 in List.iteri (fun i x -> if i > 0 then n := !n + pp_flatten st sep; n := !n + pp_flatten st x) l; !n | Wrap (ext, v, d) -> let inside = Ext.get ext.k st.ext_map in ext.pre st.out ~inside v; let st' = { st with ext_map = Ext.add ext.k v st.ext_map } in let n = pp_flatten st' d in ext.post st.out ~inside v; n (** Does [x] fit in the current line when flattened, given that [k] chars are already on the line? *) let[@inline] fits_flattened st k x = x.wfl <= st.width - k let pp_newline (st : st) i = st.out.char '\n'; add_indent st i (** Print [self] into the buffer. @param k how many chars are already printed on the current line *) let rec pp_rec (st : st) (k : int) (stack : (int * t) list) : unit = match stack with | [] -> () | (i, d) :: stack_tl -> pp_rec_top st ~k ~i d (fun st k -> pp_rec st k stack_tl) (** Print [d] at indentation [i], with [k] chars already printed on the current line, then calls [kont] with the new [k]. *) and pp_rec_top st ~k ~i d (kont : st -> int -> unit) : unit = match d.view with | Nil -> kont st k | Char c -> st.out.char c; kont st (k + 1) | Newline _ -> pp_newline st i; kont st i | Nest (j, x) -> pp_rec_top st ~k ~i:(i + j) x kont | Append (x, y) -> (* print [x], then print [y] *) pp_rec_top st ~k ~i x (fun st k -> pp_rec_top st ~k ~i y kont) | Text s -> st.out.string s; kont st (k + String.length s) | Text_zero_width s -> st.out.string s; kont st k | Text_sub (s, i, len) -> st.out.sub_string s i len; kont st (k + len) | Group x -> if fits_flattened st k x then ( (* print flattened *) let w_x = pp_flatten st x in assert (w_x = x.wfl); kont st (k + w_x) ) else pp_rec_top st ~k ~i x kont | Fill { sep; l } -> pp_fill st ~k ~i sep l kont | Wrap (ext, v, d) -> let old_ext_map = st.ext_map in let inside = Ext.get ext.k st.ext_map in ext.pre st.out ~inside v; let st' = { st with ext_map = Ext.add ext.k v st.ext_map } in pp_rec_top st' ~k ~i d (fun st k -> ext.post st.out ~inside v; kont { st with ext_map = old_ext_map } k) and pp_fill st ~k ~i sep l (kont : st -> int -> unit) : unit = (* [k] is the current offset in the line *) let rec loop st idx k l = match l with | x :: tl -> if fits_flattened st k x then ( (* all flattened *) let w_sep = if idx = 0 then 0 else pp_flatten st sep in let w_x = pp_flatten st x in assert (w_x = x.wfl); loop st (idx + 1) (k + w_x + w_sep) tl ) else ( (* print, followed by a newline and resume filling with [k=i] *) let pp_and_continue st k = pp_rec_top st ~k ~i x (fun st k -> loop st (idx + 1) k tl) in if idx > 0 then (* separator, then item *) pp_rec_top st ~k ~i sep pp_and_continue else pp_and_continue st k ) | [] -> kont st k in loop st 0 k l let to_out ~width out (self : t) : unit = let st = { out; width; ext_map = Ext.empty } in pp_rec st 0 [ 0, self ] let to_buffer ~width (buf : Buffer.t) (self : t) : unit = to_out ~width (Out.of_buffer buf) self let to_string ~width (self : t) : string = let buf = Buffer.create 32 in to_buffer ~width buf self; Buffer.contents buf let to_format ~width out self : unit = (* TODO: more efficient implementation based on out *) CCFormat.string_lines out (to_string ~width self) end let pp = Pretty.to_format ~width:80 (* helpers *) let sp = char ' ' module Infix = struct let ( ^ ) = append let[@inline] ( ^+ ) x y = x ^ sp ^ y let[@inline] ( ^/ ) x y = x ^ nl ^ y end include Infix let true_ = text "true" let false_ = text "false" let bool b = if b then true_ else false_ let int x : t = text (string_of_int x) let float x : t = text (string_of_float x) let float_hex x : t = textpf "%h" x let text_quoted s : t = text (Printf.sprintf "%S" s) let text_zero_width s : t = { view = Text_zero_width s; wfl = 0 } let append_l ?(sep = nil) l = let rec loop = function | [] -> nil | [ x ] -> x | x :: tl -> x ^ sep ^ loop tl in loop l let append_sp l = append_l ~sep:sp l let append_nl l = append_l ~sep:nl l let fill sep = function | [] -> nil | [ x ] -> x | l -> (* flattened: just like concat *) let wfl = List.fold_left (fun wfl x -> wfl + x.wfl) 0 l + ((List.length l - 1) * sep.wfl) in { view = Fill { sep; l }; wfl } let fill_map sep f l = fill sep (List.map f l) let of_list ?(sep = nil) f l = let rec loop = function | [] -> nil | [ x ] -> f x | x :: tl -> f x ^ sep ^ loop tl in loop l let of_seq ?(sep = nil) f seq : t = let rec loop first seq = match seq () with | Seq.Nil -> nil | Seq.Cons (x, tl) -> let x = f x in (if first then x else sep ^ x) ^ loop false tl in loop true seq let bracket l d r : t = group (text l ^ nest (String.length l) d ^ text r) let bracket2 l d r : t = group (text l ^ nest 2 (nl ^ d) ^ nl ^ text r) let sexp_l l : t = char '(' ^ nest 1 (group (append_nl l ^ char ')')) let sexp_apply a l : t = sexp_l (text a :: l) let surround ?(width = 1) l b r = group (l ^ nest width b ^ r) module Char = struct let bang = char '!' let at = char '@' let hash = char '#' let dollar = char '$' let tilde = char '~' let backquote = char '`' let percent = char '%' let caret = char '^' let ampersand = char '&' let star = char '*' let minus = char '-' let underscore = char '_' let plus = char '+' let equal = char '=' let pipe = char '|' let slash = char '/' let backslash = char '\\' let colon = char ':' let semi = char ';' let guillemet = char '"' let quote = char '\'' let comma = char ',' let dot = char '.' let question = char '?' let lparen = char '(' let rparen = char ')' let lbrace = char '{' let rbrace = char '}' let lbracket = char '[' let rbracket = char ']' let langle = char '<' let rangle = char '>' end module Dump = struct let list l : t = let sep = char ';' ^ nl in group (char '[' ^ nest 1 (fill sep l) ^ char ']') let parens d = surround Char.lparen d Char.rparen let braces d = surround Char.lbrace d Char.rbrace let brackets d = surround Char.lbracket d Char.rbracket let angles d = surround Char.langle d Char.rangle let of_iter ?(sep = nil) g it = let r = ref nil in it (fun elt -> r := !r ^ sep ^ g elt); !r let of_array ?(sep = nil) g arr = let r = ref nil in for i = 0 to Array.length arr - 1 do r := !r ^ sep ^ g arr.(i) done; !r end module Term_color = struct type color = [ `Black | `Red | `Yellow | `Green | `Blue | `Magenta | `Cyan | `White ] type style = [ `FG of color (* foreground *) | `BG of color (* background *) | `Bold | `Reset | `Underline ] let int_of_color_ = function | `Black -> 0 | `Red -> 1 | `Green -> 2 | `Yellow -> 3 | `Blue -> 4 | `Magenta -> 5 | `Cyan -> 6 | `White -> 7 let code_of_style : style -> int = function | `FG c -> 30 + int_of_color_ c | `BG c -> 40 + int_of_color_ c | `Bold -> 1 | `Reset -> 0 | `Underline -> 4 let spf = Printf.sprintf let string_of_style a = spf "\x1b[%dm" (code_of_style a) let reset = string_of_style `Reset let string_of_style_list = function | [] -> reset | [ a ] -> string_of_style a | [ a; b ] -> spf "\x1b[%d;%dm" (code_of_style a) (code_of_style b) | [ a; b; c ] -> spf "\x1b[%d;%d;%dm" (code_of_style a) (code_of_style b) (code_of_style c) | l -> let buf = Buffer.create 32 in let pp_num c = Buffer.add_string buf (string_of_int (code_of_style c)) in Buffer.add_string buf "\x1b["; List.iteri (fun i c -> if i > 0 then Buffer.add_char buf ';'; pp_num c) l; Buffer.add_string buf "m"; Buffer.contents buf let ext_style_ : style list Ext.t = Ext.make ~name:"termcolor" ~pre:(fun out ~inside:_ l -> Out.string out (string_of_style_list l)) ~post:(fun out ~inside _l -> let style = CCOption.map_or ~default:reset string_of_style_list inside in Out.string out style) () (** Set the foreground color. *) let color (c : color) (d : t) : t = ext ext_style_ [ `FG c ] d (** Set a full style for this document. *) let style_l (l : style list) (d : t) : t = ext ext_style_ l d end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>