package biocaml
The OCaml Bioinformatics Library
Install
Dune Dependency
Authors
Maintainers
Sources
biocaml-0.11.2.tbz
sha256=fae219e66db06f81f3fd7d9e44717ccf2d6d85701adb12004ab4ae6d3359dd2d
sha512=f6abd60dac2e02777be81ce3b5acdc0db23b3fa06731f5b2d0b32e6ecc9305fe64f407bbd95a3a9488b14d0a7ac7c41c73a7e18c329a8f18febfc8fd50eccbc6
doc/src/biocaml.unix/sbml.ml.html
Source file sbml.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
(*A module for parsing SBML level 2 version 4*) exception Bad of string let raise_bad msg = raise (Bad msg) type sb_math_operator = (* arithmetics *) | MPlus (* a + b *) | MMinus (* a - b *) | MTimes (* a * b *) | MDivide (* a / b *) | MPower (* a ^ b *) | MRoot (* a^(1/b) *) | MAbs (* |a| *) | MExp (* e^a *) | MLn (* ln a *) | MLog (* log a,b *) | MFloor (* floor a *) | MCeiling (* ceil a *) | MFactorial (* a! *) (* relational *) | MEq (* a == b *) | MNeq (* a != b *) | MGt (* a > b *) | MLt (* a < b *) | MGeq (* a >= b *) | MLeq (* a <= b *) (* logic *) | MAnd (* a & b *) | MOr (* a | b *) | MXor (* a ^^ b *) | MNot (* !a *) (*trigonometry*) | MSin | MCos | MTan | MArcsin | MArccos | MArctan (*delay a,b - see SBML spec *) | MDelay (*user-defined functions*) | MFundef of string type sb_math = (* composite *) | MApply of sb_math_operator * (sb_math list) | MLambda of (string list) * sb_math | MPiecewise of ((string * sb_math) list) * string (* tokens *) | MFloatNumber of float | MIntNumber of int | MIdentifier of string | MTime (* simulation time - see SBML spec*) | MTrue | MFalse | MNAN | MPi | MExponent | MInfinity | MNoMath type sb_unit = { unit_kind: string; unit_exponent: int; unit_scale: int; unit_multiplier: float; } type sb_function_definition = { fundef_id: string; fundef_name: string; fundef_math: sb_math; } type sb_unit_definition = { unitdef_id: string; unitdef_name: string; unitdef_unitlist: sb_unit list; } type sb_compartment = { compart_id: string; compart_name: string; compart_spatialDimensions: int; compart_size: float; compart_units: string; compart_outside: string; compart_constant: bool; } type sb_species_ref = { specref_species: string; specref_id: string; specref_name: string; specref_stoichiometry: int; (* TODO variant stoichiometry | stoichiometryMath *) } type sb_species = { species_id: string; species_name: string; species_type: string; species_compartment: string; species_initialAmount: float; species_initialConcentration: float; species_substanceUnits: string; species_hasOnlySubstanceUnits: bool; species_boundaryCondition: bool; species_constant: bool; } type sb_parameter = { param_id: string; param_name: string; param_value: float; param_units: string; param_constant: bool; } type sb_kinetic_law = { klaw_math: sb_math; klaw_parameters: sb_parameter list; } type sb_reaction = { react_id: string; react_name: string; react_boundaryCondition: bool; react_fast: bool; react_reactants: sb_species_ref list; react_products: sb_species_ref list; react_kineticLaw: sb_kinetic_law; } type sb_initial_assignment = { ia_symbol: string; ia_math: sb_math; } type sb_algebraic_rule = { ar_math: sb_math; } type sb_generic_rule = { gr_variable: string; gr_math: sb_math; } type sb_rule = RateRule of sb_generic_rule | AssignmentRule of sb_generic_rule | AlgebraicRule of sb_algebraic_rule type sb_math_container = { math: sb_math; } type sb_delay = Delay of sb_math_container type sb_trigger = Trigger of sb_math_container type sb_event_assignment = { ea_variable: string; ea_math: sb_math; } type sb_event = { event_id: string; event_name: string; event_useValuesFromTriggerTime: bool; event_trigger: sb_trigger; event_delay: sb_delay; event_assignments: sb_event_assignment list; } (*a wrapper type to deal with heterogeneous lists*) type sb_L = LFunctionDefinition of sb_function_definition | LUnitDefinition of sb_unit_definition | LCompartment of sb_compartment | LSpecies of sb_species | LReaction of sb_reaction | LParameter of sb_parameter | LInitialAssignment of sb_initial_assignment | LRule of sb_rule | LEvent of sb_event | LEventAssignment of sb_event_assignment | LSpecieRef of sb_species_ref | LUnit of sb_unit type sb_model = { sbm_id: string; sbm_name: string; sbm_functionDefinitions : sb_function_definition list; sbm_unitDefinitions : sb_unit_definition list; sbm_compartments : sb_compartment list; sbm_species : sb_species list; sbm_reactions : sb_reaction list; sbm_parameters : sb_parameter list; sbm_initialAssignments : sb_initial_assignment list; sbm_rules : sb_rule list; sbm_events : sb_event list; (*could not find test xmls for these*) (*constraints : sb_constraint list; compartmentTypes : sb_compartment_type list; speciesTypes : sb_species_type list;*) } let ignore_input i = ignore (Xmlm.input i : Xmlm.signal) module MathML = struct (* MathML prettyprinting *) let rec math_to_string math = let operator_to_string oper = match oper with | MPlus -> "+" | MMinus -> "-" | MTimes -> "*" | MPower -> "^" | MAbs -> "ABS" | MExp -> "EXP" | MFactorial -> "FACTORIAL" | MCeiling -> "CEILING" | MLt -> "<" | MGt -> ">" | MLeq -> "<=" | MGeq -> ">=" | MDelay -> "DELAY" | MFundef oper -> oper | _ -> raise_bad "can't convert unknown operator" in match math with | MApply (oper, exprlist) -> "(" ^ (operator_to_string oper) ^ " " ^ (String.concat ~sep:" " (List.map ~f:math_to_string exprlist)) ^ ")" | MLambda (bvarlist, lambda_expr) -> "(LAMBDA (" ^ (String.concat ~sep:" " bvarlist) ^ ") " ^ (math_to_string lambda_expr) ^ ")" | MPiecewise (piecelist, otherwise) -> "(PIECEWISE " ^ (String.concat ~sep:" " (List.map ~f:(fun next -> let (var, varexpr) = next in "(" ^ (math_to_string varexpr) ^ " " ^ var ^ ")") piecelist)) ^ " " ^ otherwise ^ ")" | MFloatNumber f -> (string_of_float f) | MIntNumber i -> (string_of_int i) | MIdentifier s -> s | MTime -> "<time>" | MExponent -> "e" | MNoMath -> "/no math/" | _ -> raise_bad "can't convert unknown math expr" (* MathML parsing *) let extract_string i depth errmsg = let rec i depth = if depth > 0 then begin ignore_input i; skip_tags i (depth - 1) end else () in skip_tags i depth; let result = match Xmlm.input i with | `Data dat -> dat | _ -> raise_bad errmsg in skip_tags i depth; result let unpack_string s = match s with | MIdentifier(str) -> str | _ -> raise_bad "not a packed string" let unpack_symbol_type attrs = let (_,sbmlUrl) = List.find_exn ~f:(fun next -> let ((_,tag), _) = next in String.equal tag "definitionURL") attrs in let splitUrl = String.split ~on:'/' sbmlUrl in List.nth_exn splitUrl (List.length splitUrl - 1) let parse_bvarlist i = let rec bvarlist_iter i bvarlist = match Xmlm.peek i with | `El_start ((_, "bvar"), _) -> bvarlist_iter i ((extract_string i 2 "malformed lambda expr in bvar") :: bvarlist) | `El_start ((_, _), _) -> bvarlist | _ -> raise_bad "malformed lambda expr in bvar list" in List.rev (bvarlist_iter i []) let rec parse_mathexpr i = let rec mathexpr_iter i formula = match Xmlm.input i with | `El_start ((_, "apply"), _) -> let operator = parse_operator i in let exprlist = parse_exprlist i in mathexpr_iter i (MApply (operator, exprlist)) | `El_start ((_, "lambda"), _) -> let bvars = parse_bvarlist i in let lambda_expr = parse_mathexpr i in mathexpr_iter i (MLambda (bvars, lambda_expr)) | `El_start ((_, "piecewise"), _) -> let pieces = parse_piecelist i in let otherwise = extract_string i 2 "malformed otherwise expr" in mathexpr_iter i (MPiecewise (pieces, otherwise)) | `El_start ((_, "ci"), _) -> mathexpr_iter i (MIdentifier (unpack_string (parse_mathexpr i))) | `El_start ((_, "cn"), attrs) -> if (List.length attrs) = 1 then match List.hd_exn attrs with | ((_, "type"), "integer") -> mathexpr_iter i (MIntNumber (int_of_string (unpack_string (parse_mathexpr i)))) | ((_, "type"), "e-notation") -> mathexpr_iter i (MFloatNumber (float_of_string (unpack_string (parse_mathexpr i)))) | ((_, _), _) -> raise_bad "malformed cn tag" else mathexpr_iter i (MFloatNumber (float_of_string (unpack_string (parse_mathexpr i)))) | `El_start ((_, "sep"), _) -> mathexpr_iter i (MIdentifier ((unpack_string (formula)) ^ "e" ^ (unpack_string (parse_mathexpr i)))) | `El_start ((_, "csymbol"), attrs) -> if String.equal (unpack_symbol_type attrs) "time" then begin ignore_input i; mathexpr_iter i (MTime) end else raise_bad "malformed csymbol expr" | `El_start ((_, "exponentiale"), _) -> mathexpr_iter i (MExponent) (* add more tokens *) | `El_start ((_, tag), _) -> print_endline tag; raise_bad "unknown math tag" | `Data dat -> MIdentifier (dat) | `El_end -> formula | `Dtd _ -> assert false in mathexpr_iter i MNoMath and parse_operator i = let oper = match Xmlm.input i with | `El_start ((_, "plus"), _) -> MPlus | `El_start ((_, "minus"), _) -> MMinus | `El_start ((_, "times"), _) -> MTimes | `El_start ((_, "power"), _) -> MPower | `El_start ((_, "abs"), _) -> MAbs | `El_start ((_, "exp"), _) -> MExp | `El_start ((_, "factorial"), _) -> MFactorial | `El_start ((_, "ceiling"), _) -> MCeiling | `El_start ((_, "lt"), _) -> MLt | `El_start ((_, "gt"), _) -> MGt | `El_start ((_, "leq"), _) -> MLeq | `El_start ((_, "geq"), _) -> MGeq (* add more operators *) | `El_start ((_, "csymbol"), attrs) -> if String.equal (unpack_symbol_type attrs) "delay" then begin ignore_input i; MDelay end else raise_bad "malformed csymbol expr" (* assume a user-defined function in functionDefinition*) | `El_start ((_, "ci"), _) -> MFundef (unpack_string (parse_mathexpr i)) | _ -> raise_bad "malformed apply expr" in ignore_input i; oper and parse_exprlist i = let rec exprlist_iter i exprlist = match Xmlm.peek i with | `El_start ((_, _), _) -> exprlist_iter i ((parse_mathexpr i) :: exprlist) | `El_end -> exprlist | _ -> raise_bad "malformed mathml in apply" in List.rev (exprlist_iter i []) and parse_piecelist i = let rec piecelist_iter i piecelist = match Xmlm.peek i with | `El_start ((_, "piece"), _) -> ignore_input i; let piece_var = extract_string i 1 "malformed piece expr" in let piece_expr = parse_mathexpr i in ignore_input i; piecelist_iter i ((piece_var, piece_expr) :: piecelist) | `El_start ((_, "otherwise"), _) -> piecelist | _ -> raise_bad "malformed piecewise expr" in List.rev (piecelist_iter i []) let parse_math _ i = let sbm = parse_mathexpr i in ignore_input i; (*math tag end*) sbm end let parse_math = MathML.parse_math let math_to_string = MathML.math_to_string module SBMLParser = struct (*abstract stuff for lists and attributes*) let store_attrs attrs = let parse_hash = Caml.Hashtbl.create 10 in let store_attr attr = match attr with | ((_, nam), value) -> Caml.Hashtbl.add parse_hash nam value in List.iter ~f:store_attr attrs; parse_hash let parse_list i assoclist = let rec iter_list i templist = match Xmlm.input i with | `El_start ((_, tagname), attrs) -> iter_list i ((try ((Caml.List.assoc tagname assoclist) attrs i) with Caml.Not_found -> raise_bad tagname) :: templist) | `El_end -> templist | `Data _ -> iter_list i templist | `Dtd _ -> assert false in iter_list i [] let parse_record i list_dict record_dict = let list_hash = Caml.Hashtbl.create 10 in let record_hash = Caml.Hashtbl.create 10 in let rec iter_record i = match Xmlm.input i with | `El_start ((_, tagname), attrs) -> (if (String.compare (String.sub tagname ~pos:0 ~len:4) "list")=0 then (try (Caml.Hashtbl.add list_hash tagname (parse_list i (Caml.List.assoc tagname list_dict))) with Caml.Not_found -> raise_bad tagname) else (try (Caml.Hashtbl.add record_hash tagname ((Caml.List.assoc tagname record_dict) attrs i)) with Caml.Not_found -> raise_bad tagname)); iter_record i | `El_end -> () | `Data _ -> iter_record i | `Dtd _ -> assert false in iter_record i; (list_hash, record_hash) (*leaf record parsing, 'ignore_input i' is for skipping tag's end *) let parse_unit attrs i = ignore_input i; let parse_hash = store_attrs attrs in LUnit ({ unit_kind = (Caml.Hashtbl.find parse_hash "kind"); unit_exponent = (try (int_of_string (Caml.Hashtbl.find parse_hash "exponent")) with Caml.Not_found -> 1); unit_scale = (try int_of_string (Caml.Hashtbl.find parse_hash "scale") with Caml.Not_found -> 0); unit_multiplier = (try (float_of_string (Caml.Hashtbl.find parse_hash "multiplier")) with Caml.Not_found -> 1.0) }) let parse_compartment attrs i = ignore_input i; let parse_hash = store_attrs attrs in LCompartment ({ compart_id = (Caml.Hashtbl.find parse_hash "id"); compart_name = (try (Caml.Hashtbl.find parse_hash "name") with Caml.Not_found -> ""); compart_size = (try (float_of_string (Caml.Hashtbl.find parse_hash "size")) with Caml.Not_found -> 0.0); compart_spatialDimensions = (try (int_of_string (Caml.Hashtbl.find parse_hash "spatialDimensions")) with Caml.Not_found -> 3); compart_units = (try (Caml.Hashtbl.find parse_hash "units") with Caml.Not_found -> ""); compart_outside = (try (Caml.Hashtbl.find parse_hash "outside") with Caml.Not_found -> ""); compart_constant = (try (bool_of_string (Caml.Hashtbl.find parse_hash "constant")) with Caml.Not_found -> true); }) let parse_species attrs i = ignore_input i; let parse_hash = store_attrs attrs in LSpecies ({ species_id = (Caml.Hashtbl.find parse_hash "id"); species_name = (try (Caml.Hashtbl.find parse_hash "name") with Caml.Not_found -> ""); species_type = (try (Caml.Hashtbl.find parse_hash "speciesType") with Caml.Not_found -> ""); species_compartment = (Caml.Hashtbl.find parse_hash "compartment"); species_initialAmount = (try (float_of_string (Caml.Hashtbl.find parse_hash "initialAmount")) with Caml.Not_found -> 0.0); species_initialConcentration = (try (float_of_string (Caml.Hashtbl.find parse_hash "initialConcentration")) with Caml.Not_found -> 0.0); species_substanceUnits = (try (Caml.Hashtbl.find parse_hash "substanceUnits") with Caml.Not_found -> ""); species_hasOnlySubstanceUnits = (try (bool_of_string (Caml.Hashtbl.find parse_hash "hasOnlySubstanceUnits")) with Caml.Not_found -> false); species_boundaryCondition = (try (bool_of_string (Caml.Hashtbl.find parse_hash "boundaryCondition")) with Caml.Not_found -> false); species_constant = (try (bool_of_string (Caml.Hashtbl.find parse_hash "constant")) with Caml.Not_found -> false); }) let parse_spreference attrs i = ignore_input i; let parse_hash = store_attrs attrs in LSpecieRef ({ specref_species = (Caml.Hashtbl.find parse_hash "species"); specref_id = (try (Caml.Hashtbl.find parse_hash "id") with Caml.Not_found -> ""); specref_name = (try (Caml.Hashtbl.find parse_hash "name") with Caml.Not_found -> ""); specref_stoichiometry = (try (int_of_string (Caml.Hashtbl.find parse_hash "stoichiometry")) with Caml.Not_found -> 1) }) let parse_parameter attrs i = ignore_input i; let parse_hash = store_attrs attrs in LParameter ({ param_id = (try (Caml.Hashtbl.find parse_hash "id") with Caml.Not_found -> raise_bad "no id for parameter") ; param_name = (try (Caml.Hashtbl.find parse_hash "name") with Caml.Not_found -> ""); param_value = (try (float_of_string (Caml.Hashtbl.find parse_hash "value")) with Caml.Not_found -> 0.0); param_units = (try (Caml.Hashtbl.find parse_hash "units") with Caml.Not_found -> ""); param_constant = (try (bool_of_string (Caml.Hashtbl.find parse_hash "constant")) with Caml.Not_found -> true); }) (*container record parsing*) let parse_fundef attrs i = let parse_hash = store_attrs attrs in let (_, record_hash) = parse_record i [] [("math",parse_math)] in LFunctionDefinition ({ fundef_id = (Caml.Hashtbl.find parse_hash "id"); fundef_name = (try (Caml.Hashtbl.find parse_hash "name") with Caml.Not_found -> ""); fundef_math = (try (Caml.Hashtbl.find record_hash "math") with Caml.Not_found -> MNoMath); }) let parse_unitdef attrs i = let parse_hash = store_attrs attrs in let (_, record_hash) = parse_record i [("listOfUnits",[("unit",parse_unit)])] [] in LUnitDefinition ({ unitdef_id = (Caml.Hashtbl.find parse_hash "id"); unitdef_name = (try (Caml.Hashtbl.find parse_hash "name") with Caml.Not_found -> ""); unitdef_unitlist = (try (List.rev_map ~f:(function LUnit(t) -> t | _ -> raise_bad "unit") (Caml.Hashtbl.find record_hash "listOfUnits")) with Caml.Not_found -> []); }) let parse_iassignment attrs i = let parse_hash = store_attrs attrs in let _, record_hash = parse_record i [] [ "math", parse_math ] in LInitialAssignment ({ ia_symbol = (Caml.Hashtbl.find parse_hash "symbol"); ia_math = (try (Caml.Hashtbl.find record_hash "math") with Caml.Not_found -> MNoMath); }) let parse_generic_rule attrs i = let parse_hash = store_attrs attrs in let _, record_hash = parse_record i [] [ "math", parse_math ] in { gr_variable = (Caml.Hashtbl.find parse_hash "variable"); gr_math = (try (Caml.Hashtbl.find record_hash "math") with Caml.Not_found -> MNoMath); } let parse_algebraic_rule _ i = let _, record_hash = parse_record i [] [ "math", parse_math ] in LRule (AlgebraicRule ({ ar_math = (try (Caml.Hashtbl.find record_hash "math") with Caml.Not_found -> MNoMath); })) let parse_assignment_rule attrs i = LRule (AssignmentRule (parse_generic_rule attrs i)) let parse_rate_rule attrs i = LRule (RateRule (parse_generic_rule attrs i)) let parse_kineticlaw _ i = let (list_hash,record_hash) = (parse_record i [("listOfParameters",[("parameter",parse_parameter)])] [("math",parse_math)]) in { klaw_parameters = (try (List.rev_map ~f:(function LParameter(t) -> t | _ -> raise_bad "parameter") (Caml.Hashtbl.find list_hash "listOfParameters")) with Caml.Not_found -> []); klaw_math = (try (Caml.Hashtbl.find record_hash "math") with Caml.Not_found -> MNoMath); } let parse_reaction attrs i = let parse_hash = store_attrs attrs in let (list_hash,record_hash) = (parse_record i [("listOfReactants",[("speciesReference",parse_spreference)]); ("listOfProducts",[("speciesReference",parse_spreference)])] [("kineticLaw",parse_kineticlaw)]) in LReaction ({ react_id = (Caml.Hashtbl.find parse_hash "id"); react_name = (try (Caml.Hashtbl.find parse_hash "name") with Caml.Not_found -> ""); react_boundaryCondition = (try (bool_of_string (Caml.Hashtbl.find parse_hash "reversible")) with Caml.Not_found -> true); react_fast = (try (bool_of_string (Caml.Hashtbl.find parse_hash "fast")) with Caml.Not_found -> false); react_reactants = (try (List.rev_map ~f:(function LSpecieRef(t) -> t | _ -> raise_bad "malformed specieReference") (Caml.Hashtbl.find list_hash "listOfReactants")) with Caml.Not_found -> []); react_products = (try (List.rev_map ~f:(function LSpecieRef(t) -> t | _ -> raise_bad "malformed specieReference") (Caml.Hashtbl.find list_hash "listOfProducts")) with Caml.Not_found -> []); react_kineticLaw = (try (Caml.Hashtbl.find record_hash "kineticLaw") with Caml.Not_found -> {klaw_parameters = []; klaw_math = MNoMath}); }) let parse_eassignment attrs i = let parse_hash = store_attrs attrs in let _, record_hash = parse_record i [] [ "math", parse_math ] in LEventAssignment ({ ea_variable = (Caml.Hashtbl.find parse_hash "variable"); ea_math = (try (Caml.Hashtbl.find record_hash "math") with Caml.Not_found -> MNoMath); }) let parse_math_container _ i = let _, record_hash = parse_record i [] [ "math", parse_math ] in { math = (try (Caml.Hashtbl.find record_hash "math") with Caml.Not_found -> MNoMath); } let parse_event attrs i = let parse_hash = store_attrs attrs in let (list_hash,record_hash) = (parse_record i [("listOfEventAssignments",[("eventAssignment",parse_eassignment)])] [("trigger",parse_math_container); ("delay",parse_math_container)]) in LEvent ({ event_id = (try (Caml.Hashtbl.find parse_hash "id") with Caml.Not_found -> ""); event_name = (try (Caml.Hashtbl.find parse_hash "name") with Caml.Not_found -> ""); event_useValuesFromTriggerTime = (try (bool_of_string (Caml.Hashtbl.find parse_hash "useValuesFromTriggerTime")) with Caml.Not_found -> true); event_trigger = (try Trigger (Caml.Hashtbl.find record_hash "trigger") with Caml.Not_found -> raise_bad "trigger not found in event"); event_delay = (try Delay (Caml.Hashtbl.find record_hash "delay") with Caml.Not_found -> Delay ({math = MNoMath})); event_assignments = (try (List.rev_map ~f:(function LEventAssignment(t) -> t | _ -> raise_bad "malformed eventAssignment") (Caml.Hashtbl.find list_hash "listOfEventAssignments")) with Caml.Not_found -> []); }) let parse_model attrs i = let parse_hash = store_attrs attrs in let list_hash, _ = parse_record i [("listOfFunctionDefinitions",[("functionDefinition",parse_fundef)]); ("listOfUnitDefinitions",[("unitDefinition",parse_unitdef)]); ("listOfCompartments",[("compartment",parse_compartment)]); ("listOfSpecies",[("species",parse_species)]); ("listOfReactions",[("reaction",parse_reaction)]); ("listOfParameters",[("parameter",parse_parameter)]); ("listOfInitialAssignments",[("initialAssignment",parse_iassignment)]); ("listOfRules",[("assignmentRule",parse_assignment_rule); ("rateRule",parse_rate_rule); ("algebraicRule",parse_algebraic_rule)]); ("listOfEvents",[("event",parse_event)])] [] in { sbm_id = (try (Caml.Hashtbl.find parse_hash "id") with Caml.Not_found -> ""); sbm_name = (try (Caml.Hashtbl.find parse_hash "name") with Caml.Not_found -> ""); sbm_functionDefinitions = (try (List.rev_map ~f:(function LFunctionDefinition(t) -> t | _ -> raise_bad "malformed functionDefinition") (Caml.Hashtbl.find list_hash "listOfFunctionDefinitions")) with Caml.Not_found -> []); sbm_unitDefinitions = (try (List.rev_map ~f:(function LUnitDefinition(t) -> t | _ -> raise_bad "malformed unitDefinition") (Caml.Hashtbl.find list_hash "listOfUnitDefinitions")) with Caml.Not_found -> []); sbm_compartments = (try (List.rev_map ~f:(function LCompartment(t) -> t | _ -> raise_bad "malformed compartment") (Caml.Hashtbl.find list_hash "listOfCompartments")) with Caml.Not_found -> []); sbm_species = (try (List.rev_map ~f:(function LSpecies(t) -> t | _ -> raise_bad "malformed species") (Caml.Hashtbl.find list_hash "listOfSpecies")) with Caml.Not_found -> []); sbm_reactions = (try (List.rev_map ~f:(function LReaction(t) -> t | _ -> raise_bad "malformed reaction") (Caml.Hashtbl.find list_hash "listOfReactions")) with Caml.Not_found -> []); sbm_parameters = (try (List.rev_map ~f:(function LParameter(t) -> t | _ -> raise_bad "malformed parameter") (Caml.Hashtbl.find list_hash "listOfParameters")) with Caml.Not_found -> []); sbm_initialAssignments = (try (List.rev_map ~f:(function LInitialAssignment(t) -> t | _ -> raise_bad "malformed initialAssignment") (Caml.Hashtbl.find list_hash "listOfInitialAssignments")) with Caml.Not_found -> []); sbm_rules = (try (List.rev_map ~f:(function LRule(t) -> t | _ -> raise_bad "malformed rule") (Caml.Hashtbl.find list_hash "listOfRules")) with Caml.Not_found -> []); sbm_events = (try (List.rev_map ~f:(function LEvent(t) -> t | _ -> raise_bad "malformed event") (Caml.Hashtbl.find list_hash "listOfEvents")) with Caml.Not_found -> []); } (*reader function*) let in_sbml ichan = let i = (Xmlm.make_input ~strip:true (`Channel ichan)) in ignore_input i; (* `Dtd *) ignore_input i; (* smbl tag start *) let model = match Xmlm.input i with | `El_start ((_, "model"), attrs) -> parse_model attrs i | _ -> raise_bad "malformed sbml" in ignore_input i; (* smbl tag end *) if not (Xmlm.eoi i) then raise_bad "sbml too long"; model end let in_sbml = SBMLParser.in_sbml
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>