package base
Install
Dune Dependency
Authors
Maintainers
Sources
md5=2100b0ed13fecf43be86ed45c5b2cc4d
sha512=628610caff7e124631870fa1e29661caac28bdfdb18750ee43b868037da3d65d6dd9023b4be7c4c52405679efb5e865a6632d95606a22b28a36636a6bf706ef3
doc/base/Base/Nativeint/index.html
Module Base.Nativeint
Source
Processor-native integers.
include Sexplib0.Sexpable.S with type t := t
include Identifiable.S with type t := t
include Comparable.S with type t := t
include Comparisons.S with type t := t
compare t1 t2
returns 0 if t1
is equal to t2
, a negative integer if t1
is less than t2
, and a positive integer if t1
is greater than t2
.
ascending
is identical to compare
. descending x y = ascending y x
. These are intended to be mnemonic when used like List.sort ~compare:ascending
and List.sort ~cmp:descending
, since they cause the list to be sorted in ascending or descending order, respectively.
clamp_exn t ~min ~max
returns t'
, the closest value to t
such that between t' ~low:min ~high:max
is true.
Raises if not (min <= max)
.
include Pretty_printer.S with type t := t
include Invariant.S with type t := t
Infix operators and constants
Negation
There are two pairs of integer division and remainder functions, /%
and %
, and /
and rem
. They both satisfy the same equation relating the quotient and the remainder:
x = (x /% y) * y + (x % y);
x = (x / y) * y + (rem x y);
The functions return the same values if x
and y
are positive. They all raise if y = 0
.
The functions differ if x < 0
or y < 0
.
If y < 0
, then %
and /%
raise, whereas /
and rem
do not.
x % y
always returns a value between 0 and y - 1
, even when x < 0
. On the other hand, rem x y
returns a negative value if and only if x < 0
; that value satisfies abs (rem x y) <= abs y - 1
.
Other common functions
round
rounds an int to a multiple of a given to_multiple_of
argument, according to a direction dir
, with default dir
being `Nearest
. round
will raise if to_multiple_of <= 0
. If the result overflows (too far positive or too far negative), round
returns an incorrect result.
| `Down | rounds toward Int.neg_infinity | | `Up | rounds toward Int.infinity | | `Nearest | rounds to the nearest multiple, or `Up in case of a tie | | `Zero | rounds toward zero |
Here are some examples for round ~to_multiple_of:10
for each direction:
| `Down | {10 .. 19} --> 10 | { 0 ... 9} --> 0 | {-10 ... -1} --> -10 | | `Up | { 1 .. 10} --> 10 | {-9 ... 0} --> 0 | {-19 .. -10} --> -10 | | `Zero | {10 .. 19} --> 10 | {-9 ... 9} --> 0 | {-19 .. -10} --> -10 | | `Nearest | { 5 .. 14} --> 10 | {-5 ... 4} --> 0 | {-15 ... -6} --> -10 |
For convenience and performance, there are variants of round
with dir
hard-coded. If you are writing performance-critical code you should use these.
Returns the absolute value of the argument. May be negative if the input is min_value
.
Successor and predecessor functions
Exponentiation
pow base exponent
returns base
raised to the power of exponent
. It is OK if base <= 0
. pow
raises if exponent < 0
, or an integer overflow would occur.
Bit-wise logical operations
These are identical to land
, lor
, etc. except they're not infix and have different names.
Returns the number of 1 bits in the binary representation of the input.
Bit-shifting operations
The results are unspecified for negative shifts and shifts >= num_bits
.
Increment and decrement functions for integer references
Conversion functions to related integer types
of_float_unchecked
truncates the given floating point number to an integer, rounding towards zero. The result is unspecified if the argument is nan or falls outside the range of representable integers.
The number of bits available in this integer type. Note that the integer representations are signed.
Shifts right, filling in with zeroes, which will not preserve the sign of the input.
ceil_pow2 x
returns the smallest power of 2 that is greater than or equal to x
. The implementation may only be called for x > 0
. Example: ceil_pow2 17 = 32
floor_pow2 x
returns the largest power of 2 that is less than or equal to x
. The implementation may only be called for x > 0
. Example: floor_pow2 17 = 16
ceil_log2 x
returns the ceiling of log-base-2 of x
, and raises if x <= 0
.
floor_log2 x
returns the floor of log-base-2 of x
, and raises if x <= 0
.
is_pow2 x
returns true iff x
is a power of 2. is_pow2
raises if x <= 0
.
Returns the number of leading zeros in the binary representation of the input, as an integer between 0 and one less than num_bits
.
The results are unspecified for t = 0
.
Returns the number of trailing zeros in the binary representation of the input, as an integer between 0 and one less than num_bits
.
The results are unspecified for t = 0
.
A sub-module designed to be opened to make working with ints more convenient.
Conversion functions
Truncating conversions
These functions return the least-significant bits of the input. In cases where optional conversions return Some x
, truncating conversions return x
.
Byte swap functions
See Int
's byte swap section for a description of Base's approach to exposing byte swap primitives.