package async_kernel
- Overview
- No Docs
You can search for identifiers within the package.
in-package search v0.2.0
Monadic concurrency library
Install
Dune Dependency
Authors
Maintainers
Sources
async_kernel-v0.16.0.tar.gz
sha256=0eda59386235e967698834d71cb8924d7b466bc4fcbf26ae72797ad05ca6f8a9
doc/src/async_kernel/time_source.ml.html
Source file time_source.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
open! Core open! Import open! Deferred_std let debug = Debug.clock module Alarm = Timing_wheel.Alarm module Deferred = Deferred1 module Scheduler = Scheduler1 let upon = Deferred.upon let choose = Deferred.choose let choice = Deferred.choice let ( >>> ) = upon module T1 = struct include Synchronous_time_source0.T1 (* We don't include the [id] in the sexp because the user (rightly) can't control it, so it's hard to make it deterministic in tests. *) let sexp_of_t _ { id = _ ; advance_errors = _ ; am_advancing = _ ; events ; fired_events = _ ; handle_fired = _ ; is_wall_clock ; most_recently_fired = _ ; scheduler = _ } = if is_wall_clock then [%message "<wall_clock>"] else [%message (is_wall_clock : bool) (* We don't display the [Job.t]s in [events] because those are pool pointers, which are uninformative. *) (events : _ Timing_wheel.t)] ;; end open T1 module Read_write = struct type t = read_write T1.t [@@deriving sexp_of] let invariant = invariant let invariant_with_jobs = invariant_with_jobs end type t = read T1.t [@@deriving sexp_of] let invariant = invariant let invariant_with_jobs = invariant_with_jobs let read_only (t : [> read ] T1.t) = (t :> t) let create = Scheduler.create_time_source let wall_clock = Scheduler.wall_clock let alarm_precision t = Timing_wheel.alarm_precision t.events let is_wall_clock t = t.is_wall_clock let next_alarm_fires_at t = Timing_wheel.next_alarm_fires_at t.events let timing_wheel_now t = Timing_wheel.now t.events let id t = t.id module Id = Synchronous_time_source0.Id let now t = if t.is_wall_clock then (* For the wall-clock time-source, we use [Time_ns.now ()] rather than [Timing_wheel.now t.events]. The latter is only updated at the start of each cycle. There can be substantial difference between the two when people do long running computations or mix blocking code with async. And humans expect that wall-clock time is based on [Time.now], not some artifact of async implementation. *) Time_ns.now () else timing_wheel_now t ;; (* We preallocate [send_exn] to avoid allocating it on each call to [advance_clock]. *) let send_exn = Some Monitor.send_exn let advance_directly t ~to_ = Synchronous_time_source0.advance_clock t ~to_ ~send_exn let advance_directly_by t by = advance_directly t ~to_:(Time_ns.after (now t) by) let advance = advance_directly let advance_by = advance_directly_by let fire_past_alarms t = Synchronous_time_source0.fire_past_alarms t ~send_exn let yield t = Bvar.wait (Scheduler.yield t.scheduler) let can_run_a_job t = Scheduler.num_pending_jobs t > 0 || Bvar.has_any_waiters t.yield module Eager_deferred = struct let bind_unit t ~f = if Deferred.is_determined t then f () else ( let%bind () = t in f ()) ;; let map t ~f = if Deferred.is_determined t then return (f (Deferred.value_exn t)) else Deferred.map t ~f ;; end let advance_by_alarms ?wait_for t ~to_ = let run_queued_alarms () = (* Every time we want to run queued alarms we need to yield control back to the [Async.Scheduler] and [wait_for] any logic that is supposed to finish at this time before advancing. If no [wait_for] logic is specified we can simply yield control by invoking [yield t], which enqueues another job at the end of the scheduler job queue so alarm jobs have the opportunity to run before we advance. *) match wait_for with | None -> yield t | Some f -> f () in let one_step () = if Synchronous_time_source0.any_fired_events_to_run t then now t, `continue else ( match Timing_wheel.min_alarm_time_in_min_interval t.events with | None -> to_, `finish | Some min_alarm_time_in_min_interval -> if Time_ns.( >= ) min_alarm_time_in_min_interval to_ then to_, `finish else min_alarm_time_in_min_interval, `continue) in let rec walk_alarms () = let advance_to, next = one_step () in advance_directly t ~to_:advance_to; fire_past_alarms t; Eager_deferred.bind_unit (run_queued_alarms ()) ~f:(fun () -> match next with | `finish -> return () | `continue -> walk_alarms ()) in (* This first [run_queued_alarms] call allows [Clock_ns.every] the opportunity to run its continuation deferreds so that they can reschedule alarms. This is particularly useful in our "advance hits intermediate alarms" unit test below, but likely useful in other cases where [every] is synchronously followed by [advance]. *) let%bind () = run_queued_alarms () in walk_alarms () ;; let advance_by_max_alarms_in_each_timing_wheel_interval ?wait_for t ~to_ = let run_queued_alarms () = (* Every time we want to run queued alarms we need to yield control back to the [Async.Scheduler] and [wait_for] any logic that is supposed to finish at this time before advancing. If no [wait_for] logic is specified we can simply yield control by invoking [yield t], which enqueues another job at the end of the scheduler job queue so alarm jobs have the opportunity to run before we advance. *) match wait_for with | None -> yield t | Some f -> f () in let finish () = advance_directly t ~to_; fire_past_alarms t; (* so that alarms scheduled at or before [to_] fire *) run_queued_alarms () in let rec walk_alarms () = match next_alarm_fires_at t with | None -> finish () | Some next_alarm_fires_at -> if Time_ns.( >= ) next_alarm_fires_at to_ then finish () else ( advance_directly t ~to_:(Timing_wheel.max_alarm_time_in_min_interval_exn t.events); fire_past_alarms t; let queued_alarms_ran = run_queued_alarms () in Eager_deferred.bind_unit queued_alarms_ran ~f:walk_alarms) in fire_past_alarms t; (* This first [run_queued_alarms] call allows [Clock_ns.every] the opportunity to run its continuation deferreds so that they can reschedule alarms. This is particularly useful in our "advance hits intermediate alarms" unit test below, but likely useful in other cases where [every] is synchronously followed by [advance]. *) let%bind () = run_queued_alarms () in walk_alarms () ;; let advance_by_alarms_by ?wait_for t by = advance_by_alarms ?wait_for t ~to_:(Time_ns.after (now t) by) ;; let span_to_time t span = Time_ns.after (now t) span let schedule_job t ~at execution_context f a = let alarm = Timing_wheel.add t.events ~at (Job_or_event.of_job (Scheduler.create_job t.scheduler execution_context f a)) in (match t.scheduler.event_added_hook with | None -> () | Some f -> f at); alarm ;; let run_at_internal t time f a = let execution_context = Scheduler.current_execution_context t.scheduler in if Time_ns.( > ) time (Timing_wheel.now t.events) then schedule_job t ~at:time execution_context f a else ( Scheduler.enqueue t.scheduler execution_context f a; Alarm.null ()) ;; let run_at t time f a = ignore (run_at_internal t time f a : _ Alarm.t) let run_after t span f a = run_at t (span_to_time t span) f a let at = let fill result = Ivar.fill result () in fun t time -> if Time_ns.( <= ) time (Timing_wheel.now t.events) then return () else ( let result = Ivar.create () in ignore (run_at_internal t time fill result : _ Alarm.t); Ivar.read result) ;; let after t span = at t (span_to_time t span) let remove_alarm t alarm : unit = let job_or_event = Alarm.value t.events alarm in (let open Job_or_event.Match in let (K k) = kind job_or_event in match k, project k job_or_event with | Job, job -> Scheduler.free_job t.scheduler job | Event, _ -> (* This is unreachable because [alarm] only ever comes from [Event.alarm] which only ever gets populated by a call to [schedule_job]. *) assert false); Timing_wheel.remove t.events alarm ;; let remove_alarm_if_scheduled t alarm = if Timing_wheel.mem t.events alarm then remove_alarm t alarm ;; module Event = struct module Fired = struct type ('a, 'h) t = | Aborted of 'a | Happened of 'h [@@deriving sexp_of] end type ('a, 'h) t = { mutable alarm : Job_or_event.t Alarm.t ; mutable fire : unit -> unit ; (* As long as [Ivar.is_empty fired], we have not yet committed to whether the event will happen or be aborted. When [Ivar.is_empty fired], the alarm may or may not be in the timing wheel -- if it isn't, then there's a job in Async's job queue that will fire the event, unless it is aborted before that job can run. *) fired : ('a, 'h) Fired.t Ivar.t ; (* [num_fires_to_skip] is used to reschedule events that have fired and entered the Async job queue, but have not yet run. Those jobs only run if [num_fires_to_skip = 0], and otherwise just decrement it. So, to reschedule an event in such a state, we increment [num_fires_to_skip] and add a new alarm to the timing wheel. *) mutable num_fires_to_skip : int ; (* [scheduled_at] is the time at which [t] has most recently been scheduled to fire. While [t.alarm] is still in the timing wheel, this is the same as [Alarm.at t.alarm]. *) mutable scheduled_at : Time_ns.t ; time_source : Synchronous_time_source0.t } [@@deriving fields, sexp_of] type t_unit = (unit, unit) t [@@deriving sexp_of] let fired t = Ivar.read t.fired let invariant invariant_a invariant_h t = Invariant.invariant [%here] t [%sexp_of: (_, _) t] (fun () -> let events = t.time_source.events in let check f = Invariant.check_field t f in Fields.iter ~alarm: (check (fun alarm -> if Ivar.is_full t.fired then assert (not (Timing_wheel.mem events alarm)) else if Timing_wheel.mem events alarm then assert (Job_or_event.is_job (Alarm.value events alarm)))) ~fire:ignore ~fired: (check (fun (fired : _ Fired.t Ivar.t) -> match Deferred.peek (Ivar.read fired) with | None -> () | Some (Aborted a) -> invariant_a a | Some (Happened h) -> invariant_h h)) ~num_fires_to_skip: (check (fun num_fires_to_skip -> assert (num_fires_to_skip >= 0))) ~scheduled_at: (check (fun scheduled_at -> if Timing_wheel.mem events t.alarm then [%test_result: Time_ns.t] scheduled_at ~expect:(Alarm.at events t.alarm))) ~time_source:ignore) ;; module Status = struct type ('a, 'h) t = | Aborted of 'a | Happened of 'h | Scheduled_at of Time_ns.t [@@deriving sexp_of] end let status t : _ Status.t = match Deferred.peek (Ivar.read t.fired) with | None -> Scheduled_at t.scheduled_at | Some (Aborted a) -> Aborted a | Some (Happened h) -> Happened h ;; module Abort_result = struct type ('a, 'h) t = | Ok | Previously_aborted of 'a | Previously_happened of 'h [@@deriving sexp_of] end let abort t a : _ Abort_result.t = if debug then Debug.log "Time_source.Event.abort" t [%sexp_of: (_, _) t]; match Deferred.peek (fired t) with | Some (Aborted a) -> Previously_aborted a | Some (Happened h) -> Previously_happened h | None -> Ivar.fill t.fired (Aborted a); remove_alarm_if_scheduled t.time_source t.alarm; Ok ;; let abort_exn t a = match abort t a with | Ok -> () | Previously_happened _ -> raise_s [%message "Clock.Event.abort_exn failed to abort event that previously happened"] | Previously_aborted _ -> raise_s [%message "Clock.Event.abort_exn failed to abort event that previously aborted"] ;; let abort_if_possible t a = ignore (abort t a : _ Abort_result.t) let schedule t = t.alarm <- run_at_internal t.time_source t.scheduled_at t.fire () module Reschedule_result = struct type ('a, 'h) t = | Ok | Previously_aborted of 'a | Previously_happened of 'h [@@deriving sexp_of] end let reschedule_at t at : _ Reschedule_result.t = if debug then Debug.log "Time_source.Event.reschedule_at" (t, at) [%sexp_of: (_, _) t * Time_ns.t]; match Deferred.peek (fired t) with | Some (Aborted a) -> Previously_aborted a | Some (Happened h) -> Previously_happened h | None -> let events = t.time_source.events in let is_in_timing_wheel = Timing_wheel.mem events t.alarm in let am_trying_to_reschedule_in_the_future = Time_ns.( > ) at (Timing_wheel.now events) in t.scheduled_at <- at; (match am_trying_to_reschedule_in_the_future, is_in_timing_wheel with | false, false -> () | false, true -> t.time_source.handle_fired t.alarm; Timing_wheel.remove events t.alarm | true, false -> t.num_fires_to_skip <- t.num_fires_to_skip + 1; schedule t | true, true -> Timing_wheel.reschedule events t.alarm ~at); Ok ;; let reschedule_after t span = reschedule_at t (span_to_time t.time_source span) let run_at time_source scheduled_at f z = if debug then Debug.log "Time_source.Event.run_at" scheduled_at [%sexp_of: Time_ns.t]; let t = { alarm = Alarm.null () ; fire = ignore (* set below *) ; fired = Ivar.create () ; num_fires_to_skip = 0 ; scheduled_at ; time_source = read_only time_source } in let fire () = (* [fire] runs in an Async job. The event may have been aborted after the job was enqueued, so [fire] must check [fired]. *) if Ivar.is_empty t.fired then if t.num_fires_to_skip > 0 then t.num_fires_to_skip <- t.num_fires_to_skip - 1 else ( let result = f z in (* [f z] may have aborted the event, so we must check [fired] again. *) if Ivar.is_empty t.fired then Ivar.fill t.fired (Happened result)) in t.fire <- fire; schedule t; t ;; let at time_source time = run_at time_source time ignore () let run_after time_source span f a = run_at time_source (span_to_time time_source span) f a ;; let after time_source span = at time_source (span_to_time time_source span) end let at_times ?(stop = Deferred.never ()) t next_time = let tail = Tail.create () in let rec loop () = choose [ choice stop (fun () -> `Stop); choice (at t (next_time ())) (fun () -> `Tick) ] >>> function | `Stop -> Tail.close_exn tail | `Tick -> Tail.extend tail (); loop () in loop (); Tail.collect tail ;; let at_varying_intervals ?stop t compute_span = at_times t ?stop (fun () -> Time_ns.after (now t) (compute_span ())) ;; let at_intervals ?start ?stop t interval = let start = match start with | Some x -> x | None -> now t in at_times t ?stop (fun () -> Time_ns.next_multiple ~base:start ~after:(now t) ~interval ()) ;; module Continue = struct type t = | Immediately | After of Time_ns.Span.t | Next_multiple of Time_ns.t * Time_ns.Span.t let immediately = Immediately let at t time_source = match t with | Immediately -> Timing_wheel.now time_source.events | After span -> span_to_time time_source span | Next_multiple (base, interval) -> Time_ns.next_multiple ~base ~after:(now time_source) ~interval () ;; end let run_repeatedly ?(start = return ()) ?stop ?(continue_on_error = true) ?(finished = Ivar.create ()) t ~f ~continue = start >>> fun () -> let alarm = ref (Alarm.null ()) in let stop = match stop with | None -> Deferred.never () | Some stop -> upon stop (fun () -> if Timing_wheel.mem t.events !alarm then ( remove_alarm t !alarm; Ivar.fill_if_empty finished ())); stop in (* [run_f], [continue_f], and [continue_try_with] are defined so that we allocate their closures once, not once per iteration. *) let rec run_f () = (* Before calling [f], we synchronously check whether [stop] is determined. *) if Deferred.is_determined stop then Ivar.fill_if_empty finished () else if continue_on_error then Monitor.try_with f ~run:`Now ~rest:`Raise >>> continue_try_with else ( let d = f () in if Deferred.is_determined d then continue_f () else d >>> continue_f) and continue_f () = if Deferred.is_determined stop then Ivar.fill_if_empty finished () else alarm := run_at_internal t (Continue.at continue t) run_f () and continue_try_with or_error = (match or_error with | Ok () -> () | Error error -> Monitor.send_exn (Monitor.current ()) error); continue_f () in run_f () ;; let every' ?start ?stop ?continue_on_error ?finished t span f = if Time_ns.Span.( <= ) span Time_ns.Span.zero then raise_s [%message "Time_source.every got nonpositive span" (span : Time_ns.Span.t)]; run_repeatedly t ?start ?stop ?continue_on_error ?finished ~f ~continue:(After span) ;; let every ?start ?stop ?continue_on_error t span f = every' t ?start ?stop ?continue_on_error ?finished:None span (fun () -> f (); return ()) ;; let run_at_intervals' ?start ?stop ?continue_on_error t interval f = let now = now t in let base, start = match start with | None -> now, None | Some start -> ( start , Some (at t (Time_ns.next_multiple () ~base:start ~after:now ~can_equal_after:true ~interval)) ) in run_repeatedly t ?start ?stop ?continue_on_error ~f ~continue:(Next_multiple (base, interval)) ;; let run_at_intervals ?start ?stop ?continue_on_error t interval f = run_at_intervals' ?start ?stop ?continue_on_error t interval (fun () -> f (); return ()) ;; let with_timeout t span d = let timeout = Event.after t span in choose (* The code below does exhaustive case analysis in both [choice]s. Because [timeout] does not escape the scope of this function, certain cases should be impossible, and are marked as such with exceptions. We do not expect those exceptions to occur, but if they do, it likely indicates a bug in [choose] rather than [with_timeout]. *) [ choice d (fun v -> (match Event.abort timeout () with (* [Previously_happened] can occur if both [d] and [wait] become determined at the same time, e.g. [with_timeout (sec 0.) (return ())]. *) | Ok | Previously_happened () -> () | Previously_aborted () -> raise_s [%message "Time_source.with_timeout bug: should only abort once"]); `Result v) ; choice (Event.fired timeout) (function | Happened () -> `Timeout | Aborted () -> raise_s [%message "Time_source.with_timeout bug: both completed and timed out"]) ] ;; let duration_of t f = let start = now t in (* Eager map to provide more accurate timings when [f] is synchronous. *) Eager_deferred.map (f ()) ~f:(fun result -> let duration = Time_ns.diff (now t) start in result, duration) ;; let of_synchronous t = t let to_synchronous t = t let timing_wheel_has_event_at_or_before wheel time = if Timing_wheel.is_empty wheel then false else ( let next_alarm = Timing_wheel.next_alarm_fires_at_exn wheel in Time_ns_in_this_directory.(next_alarm <= time)) ;; let advance_directly_if_quiescent t ~to_ = let is_quescent = (* Since this function is intended to be just a fast case of [advance_by_alarms], we want to make sure that the call to [Scheduler.yield ()] can be elided, hence the [can_run_a_job] check. We're not checking epoll, and we're not checking the [external_jobs]. That is an observable difference, but since [advance_by_alarms ?wait_for:None] is already pretty broken when waiting for external events, it's not going to be meaningful. *) can_run_a_job t.scheduler || Synchronous_time_source0.has_events_to_run t || timing_wheel_has_event_at_or_before t.events to_ in if is_quescent then false else ( advance_directly t ~to_; true) ;;
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>