package async_kernel
Monadic concurrency library
Install
Dune Dependency
Authors
Maintainers
Sources
async_kernel-v0.16.0.tar.gz
sha256=0eda59386235e967698834d71cb8924d7b466bc4fcbf26ae72797ad05ca6f8a9
doc/src/async_kernel.limiter_async/limiter_async.ml.html
Source file limiter_async.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
open Core open Async_kernel open Limiter.Infinite_or_finite module Outcome = struct type 'a t = | Ok of 'a | Aborted | Raised of exn [@@deriving sexp_of] end module Job = struct type t = | Immediate : Monitor.t * ('a -> unit) * 'a -> t | Deferred : ('a -> 'b Deferred.t) * 'a * 'b Outcome.t Ivar.t -> t end module Expert = struct type t = { continue_on_error : bool (* [is_dead] is true if [t] was killed due to a job raising an exception or [kill t] being called. *) ; mutable is_dead : bool (* Ivar that is filled the next time return_to_hopper is called. *) ; mutable hopper_filled : unit Ivar.t option ; limiter : Limiter.t ; throttle_queue : ((int * Job.t) Queue.t[@sexp.opaque]) } [@@deriving sexp_of] let to_jane_limiter t = t.limiter let cycle_start () = Async_kernel_scheduler.cycle_start_ns () let create_exn ~hopper_to_bucket_rate_per_sec ~bucket_limit ~in_flight_limit ~initial_bucket_level ~initial_hopper_level ~continue_on_error = let limiter = Limiter.Expert.create_exn ~now:(cycle_start ()) ~hopper_to_bucket_rate_per_sec ~bucket_limit ~in_flight_limit ~initial_bucket_level ~initial_hopper_level in let throttle_queue = Queue.create () in { continue_on_error; is_dead = false; hopper_filled = None; limiter; throttle_queue } ;; let is_dead t = t.is_dead let kill_job = function | Job.Deferred (_, _, i) -> Ivar.fill_if_empty i Aborted | Job.Immediate (monitor, _, _) -> Monitor.send_exn monitor ~backtrace:`Get (Failure "Limiter killed") ;; let kill t = if not t.is_dead then ( t.is_dead <- true; Queue.iter t.throttle_queue ~f:(fun (_, job) -> kill_job job)) ;; let saw_error t = if not t.continue_on_error then kill t let wait_for_hopper_fill t = match t.hopper_filled with | Some i -> Ivar.read i | None -> let i = Ivar.create () in t.hopper_filled <- Some i; Ivar.read i ;; let return_to_hopper t ~now amount = (match t.hopper_filled with | None -> () | Some i -> Ivar.fill i (); t.hopper_filled <- None); Limiter.Expert.return_to_hopper t.limiter ~now amount ;; let run_job_now t job ~return_after : unit = if t.is_dead then kill_job job else ( match job with | Job.Immediate (monitor, f, v) -> (try f v with | e -> Monitor.send_exn monitor ~backtrace:`Get e); return_to_hopper t ~now:(cycle_start ()) return_after | Job.Deferred (f, v, i) -> Monitor.try_with ~run:`Schedule ~rest:`Log (fun () -> f v) >>> fun res -> return_to_hopper t ~now:(cycle_start ()) return_after; (match res with | Error e -> Ivar.fill_if_empty i (Raised e); saw_error t | Ok v -> Ivar.fill_if_empty i (Ok v))) ;; (* given a job, immediately creates and runs a job that fails with the given (as a format string) message *) let fail_job t job k = ksprintf (fun s -> let f () = failwith s in let job = match job with | Job.Immediate (monitor, _, _) -> Job.Immediate (monitor, f, ()) | Job.Deferred (_, _, i) -> Job.Deferred (f, (), i) in run_job_now t job ~return_after:0) k ;; let rec run_throttled_jobs_until_empty t = if Queue.length t.throttle_queue = 0 then () else ( let amount, job = Queue.peek_exn t.throttle_queue in let now = cycle_start () in match Limiter.Expert.try_take t.limiter ~now amount with | Asked_for_more_than_bucket_limit -> fail_job t job !"job asked for more tokens (%i) than possible (%i)" amount (Limiter.bucket_limit t.limiter); run_throttled_jobs_until_empty t | Taken -> (* Safe, because we checked the length above. And, we're guaranteed that dequeue_exn gets out the same job that peek_exn does. *) ignore (Queue.dequeue_exn t.throttle_queue : int * Job.t); run_job_now t job ~return_after:amount; run_throttled_jobs_until_empty t | Unable -> (match Limiter.Expert.tokens_may_be_available_when t.limiter ~now amount with | Never_because_greater_than_bucket_limit -> fail_job t job !"job asked for more tokens (%i) than possible (%i)" amount (Limiter.bucket_limit t.limiter); run_throttled_jobs_until_empty t | When_return_to_hopper_is_called -> wait_for_hopper_fill t >>> fun () -> run_throttled_jobs_until_empty t | At expected_fill_time -> let min_fill_time = Time_ns.add (cycle_start ()) (Async_kernel_scheduler.event_precision_ns ()) in Clock_ns.at (Time_ns.max expected_fill_time min_fill_time) >>> fun () -> run_throttled_jobs_until_empty t)) ;; let enqueue_job_and_maybe_start_queue_runner t amount job ~allow_immediate_run = let bucket_limit = Limiter.bucket_limit t.limiter in if bucket_limit < amount then fail_job t job !"requested job size (%i) exceeds the possible size (%i)" amount bucket_limit; if t.is_dead then kill_job job else if Queue.length t.throttle_queue > 0 then Queue.enqueue t.throttle_queue (amount, job) else ( let now = cycle_start () in match Limiter.Expert.try_take t.limiter ~now amount with | Asked_for_more_than_bucket_limit -> fail_job t job !"requested job size (%i) exceeds the possible size (%i)" amount bucket_limit | Taken -> (* These semantics are copied from the current Throttle, and it was important enough there to add a specific unit test. If you have do_f (); enqueue thing_to_do_later; do_g (); it is surprising if any portion of the closure thing_to_do_later happens, so we always schedule the work for later on the Async queue. This isn't as efficient as it could be for immediate jobs and can be avoided with [run_or_enqueue]. *) if allow_immediate_run then run_job_now t job ~return_after:amount else Async_kernel_scheduler.enqueue_job Execution_context.main (fun t -> run_job_now t job ~return_after:amount) t | Unable -> Queue.enqueue t.throttle_queue (amount, job); run_throttled_jobs_until_empty t) ;; let enqueue_exn t ?(allow_immediate_run = false) amount f v = enqueue_job_and_maybe_start_queue_runner t amount ~allow_immediate_run (Immediate (Monitor.current (), f, v)) ;; let enqueue' t amount f v = Deferred.create (fun i -> try enqueue_job_and_maybe_start_queue_runner t amount (Deferred (f, v, i)) ~allow_immediate_run:false with | e -> Ivar.fill i (Raised e)) ;; let cost_of_jobs_waiting_to_start t = Queue.fold t.throttle_queue ~init:0 ~f:(fun sum (cost, _) -> cost + sum) ;; end open Expert type t = Expert.t [@@deriving sexp_of] type limiter = t [@@deriving sexp_of] module Common = struct let to_limiter (t : t) = t let kill = Expert.kill let is_dead = Expert.is_dead end module type Common = sig type _ t (** kills [t], which aborts all enqueued jobs that haven't started and all jobs enqueued in the future. If [t] has already been killed, then calling [kill t] has no effect. Note that kill does not effect currently running jobs in any way. *) val kill : _ t -> unit (** [is_dead t] returns [true] if [t] was killed, either by [kill] or by an unhandled exception in a job. *) val is_dead : _ t -> bool val to_limiter : _ t -> limiter end module Token_bucket = struct type t = limiter [@@deriving sexp_of] type _ u = t let create_exn ~burst_size:bucket_limit ~sustained_rate_per_sec:fill_rate ~continue_on_error ?in_flight_limit ?(initial_burst_size = 0) () = let in_flight_limit = match in_flight_limit with | None -> Infinite | Some limit -> Finite limit in Expert.create_exn ~bucket_limit ~in_flight_limit ~hopper_to_bucket_rate_per_sec:(Finite fill_rate) ~initial_bucket_level:initial_burst_size ~initial_hopper_level:Infinite ~continue_on_error ;; let enqueue_exn = Expert.enqueue_exn let enqueue' = Expert.enqueue' include Common end module Throttle = struct type t = limiter [@@deriving sexp_of] type _ u = t let create_exn ~concurrent_jobs_target ~continue_on_error ?burst_size ?sustained_rate_per_sec () = if concurrent_jobs_target < 1 then failwithf !"concurrent_jobs_target < 1 (%i) doesn't make sense" concurrent_jobs_target (); let concurrent_jobs_target = concurrent_jobs_target in let hopper_to_bucket_rate_per_sec = match sustained_rate_per_sec with | None -> Infinite | Some rate -> Finite rate in let bucket_limit = match burst_size with | None -> concurrent_jobs_target | Some burst_size -> burst_size in let initial_bucket_level = bucket_limit in Expert.create_exn ~bucket_limit ~in_flight_limit:(Finite concurrent_jobs_target) ~hopper_to_bucket_rate_per_sec ~initial_bucket_level ~initial_hopper_level:(Finite 0) ~continue_on_error ;; let enqueue_exn t ?allow_immediate_run f v = Expert.enqueue_exn t ?allow_immediate_run 1 f v ;; let enqueue' t f v = Expert.enqueue' t 1 f v let jlimiter = Expert.to_jane_limiter let concurrent_jobs_target t = jlimiter t |> Limiter.bucket_limit let num_jobs_waiting_to_start t = Queue.length t.throttle_queue let num_jobs_running t = Limiter.in_flight (jlimiter t) ~now:(Async_kernel_scheduler.cycle_start_ns ()) ;; include Common end module Sequencer = struct include Throttle let create ?(continue_on_error = false) ?burst_size ?sustained_rate_per_sec () = create_exn ~concurrent_jobs_target:1 ~continue_on_error ?burst_size ?sustained_rate_per_sec () ;; include Common end module Resource_throttle = struct type 'a t = { throttle : Throttle.t ; resources : 'a Queue.t } [@@deriving sexp_of] let create_exn ~resources ~continue_on_error ?burst_size ?sustained_rate_per_sec () = let resources = Queue.of_list resources in let max_concurrent_jobs = Queue.length resources in let throttle = Throttle.create_exn ~concurrent_jobs_target:max_concurrent_jobs ~continue_on_error ?burst_size ?sustained_rate_per_sec () in { throttle; resources } ;; let enqueue_gen t ?allow_immediate_run f enqueue = let f () = let v = Queue.dequeue_exn t.resources in protect ~f:(fun () -> f v) ~finally:(fun () -> Queue.enqueue t.resources v) in enqueue t.throttle ?allow_immediate_run f () ;; let enqueue_exn t ?allow_immediate_run f = enqueue_gen t ?allow_immediate_run f Throttle.enqueue_exn ;; let enqueue' t f = let f () = let v = Queue.dequeue_exn t.resources in Monitor.protect ~run:`Schedule ~rest:`Log (fun () -> f v) ~finally:(fun () -> Queue.enqueue t.resources v; Deferred.unit) in Throttle.enqueue' t.throttle f () ;; let max_concurrent_jobs t = Throttle.concurrent_jobs_target t.throttle let to_limiter t = t.throttle let kill t = kill t.throttle let is_dead t = is_dead t.throttle end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>