

Pfff: PHP Program Analysis

at Facebook

Yoann Padioleau (Facebook)

http://github.com/facebook/pfff

OCaml Users and Developers Workshop 2013

About this talk
n  Feel free to ask questions during the talk

PHP Program Analysis at Facebook

n  Deadcode removal (global analysis)
n  Test coverage (dynamic analysis)
n  Use/Def checker (e.g. use of undefined function)
n  Variable checker (e.g. use of undeclared variable)
n  Syntactical Grep lint rules
n  Tainting Analysis via abstract interpreter (XSS)
n  Type checker daemon (Julien’s talk at CUFP’13)
n  Separation Logic? (Monoidics ocaml startup acquired)

But I will not talk at all about any of this in this talk

Pfff: Tools to Help
Understand Large Codebase

Yoann Padioleau (Facebook)

http://github.com/facebook/pfff

OCaml Users and Developers Workshop 2013

Demo Codemap

•  Google maps for source code
•  Program analysis + software visualization
•  Need a 30’ monitor to really appreciate

Demo Codegraph

•  Focus on code relationships, not source code
•  Understand the “Software Architecture”

Demo Codemap + Codegraph

Pfff tools and APIs

n  Other tools in Pfff:
n  CodeQuery: Prolog queries on codebase
n  stags: precise TAGS generator
n  sgrep/spatch: syntactical grep and patch
n  scheck: linter

n  Program analysis APIs for many languages (parsers,
AST visitor/dumper/matcher/highlighter, use/def
global analysis, coverage analysis, refactoring, etc):
n  OCaml (thx to .cmt in 4.00)
n  PHP
n  Java (thx to joust and javalib)
n  C/C++ (thx to yacfe and clang)
n  Html, Css, Javascript
n  …

Conclusion

n  CodeMap: a scalable semantic-based
source code visualizer/searcher/
navigator

n  CodeGraph: a scalable dependencies
visualizer

n  Future work:
n  Reordering to minimize backward deps
n  Web UI (most of it done, with ocsigen)

$ git clone git://github.com/facebook/pfff.git

Features

n  Big picture, treemaps, “macro level”
n  Search, navigation
n  Semantic-based code highlighting
“micro level”

n  Connection to editor (emacs/vim)
n  Extensible via layers (predator mode)

Codemap is not an editor

Features: treemap

n  Each rectangle is a file
n  Size of rectangle =~ size of file
n  Color of rectangle = “aspect” (test,

main, storage, security, etc)
n  “Code aware” (heuristics)

n  Auto generated file do not eat real-estate
n  Code is more important than data, xml, jpg

n  Tiling, use all the space

Features: search and navigation

n  Search
n  Highlighted rectangle
n  Ranked entities

n  Navigation
n  Up/down (not as smooth as google maps)
n  Direct access to file (faster than speedbar

or expand-directory widgets)
n  Can see spread directories

Features: semantic code visualizer

n  grammar-based highlighting, not
regexps as in emacs/vim
n  Know records vs functions vs constants
n  Functions/classes are in bigger size than

statements
n  Tiling, use all the space, multi columns
n  Semantic aware (global analysis)

n  Important functions are in bigger size

Layers: alternate color schemes

n  Age (help find dead code)
n  #authors (important stuff usually)
n  Activity (what’s going on?)
n  Code coverage
n  Bugs/warnings of linter
n  grep/sgrep results
n  Top/Bottom modules
n  …

Conclusion

n  A semantic-based source code
visualizer/searcher/navigator

n  Accelerate loading the code into your
brain (can see 20 files at once)

n  Future work:
n  Smoother zoom

$ git clone git://github.com/facebook/pfff.git

Related work

n  SeeSoft (does not scale, no treemaps)
n  Code Thumbnails (2 different modes)
n  3d visualization (not sure it helps, eat

pixels)
n  Disk explorer (not code aware, no micro-

level)

