
The design of the wxOCaml library

Fabrice Le Fessant
INRIA & OCamlPro

fabrice.le fessant@inria.fr

Abstract

WxWidgets is a well-known cross-platform library to build graphical user interfaces
for desktop applications. It has bindings for many languages, among which the most
famous is probably WxPython, but not for OCaml. Binding such a library is a huge —
error-prone — work, because, to be useful, hundreds of C++ classes with tens of methods
have to be accessible though the binding.

In this paper, we show how this problem was solved in the case of wxOCaml, providing
an easy to use, easy to extend binding supporting multiple versions of WxWidgets.

1 Introduction

WxWidgets is a well-known cross-platform library to build graphical user interfaces. Many
bindings for this library have been implemented for various languages, such as wxPython,
wxHaskell, etc. Although a prototype was available for OCaml (wxCaml), the binding
was very limited and not well-typed (all wxCaml widgets types were equivalent).

Although desktop interfaces are less used these days, they are still needed for many
desktop applications, and especially for beginners who like to see their first programs
running. GTK has a very good binding in OCaml (lablGTK), but is often not considered
good enough for two reasons:

• The look-and-feel of GTK is not as native as other libraries, especially under Win-
dows and Mac OS X.

• The binding uses all the power of OCaml type system: classes, objects, polymorphic
variants, optional arguments are used everywhere. Consequently, it is hard to use
for beginners, and sometimes even for experts, as error messages for objects are
sometimes hard to understand, without a strict type-annotation discipline.

In this paper, we present a new binding for WxWidgets in OCaml, called wxOCaml,
that provides all the advantages of WxWidgets over GTK, while still using only basic
features of OCaml type system (no classes, overloading of virtual methods by simple
records, etc.).

2 Design Choices

In WxOCaml, we wanted to map the complex C++ hierarchy of widgets’ classes on a
simplified version of the OCaml type system, i.e. without using OCaml classes, that would
naturally fit them.

For that, we first define a type α wx to be used for all WxWidgets objects ma-
nipulated as OCaml values. For every C++ class WxNAME, we associate an abstract
type wxNAME class and every corresponding value in OCaml will have type wxNAME =

wxNAME class wx. All these definitions are gathered in a WxClasses module.

1

Here is the translation of the minimal example of WxWidgets:

open WxWidgets (* minimal example , menu + messageBox *)

open WxDefs (* all symbolic constants *)

let _ = (* onInit is called from WxWidgets event loop *)

let onInit (app : wxApp) =

let frame_id = wxID () and quit_id = wxID() and about_id = wxID() in

let frame = WxFrame.createAll None frame_id

"Hello World" (50, 50) (450, 350) wxDEFAULT_FRAME_STYLE

in

WxFrame.setIcon frame (WxIcon.createFromXPM Sample_xpm.sample_xpm);

WxMENU_BAR .(wxFrame frame ["&File", [(* Application menu *)

Append(about_id , "&About");

AppendSeparator ();

Append2(quit_id , "E&xit", "Exit from the application");]]);

WxFrame.setStatusText frame "Welcome to WxWidgets!" 0;

WxEVENT_TABLE .(wxFrame frame () [(* events handlers *)

EVT_MENU(quit_id , (fun _ _ -> exit 0));

EVT_MENU(about_id , (fun _ _ -> ignore_int (

WxMisc.wxMessageBox "WxWidgets Hello World example."

"About Hello World" (wxOK lor wxICON_INFORMATION)

)))]);

ignore_bool (WxFrame.show frame);

WxApp.setTopWindow (WxFrame.wxWindow frame)

in

wxMain onInit (* start WxWidgets event loop *)

Then, for every class WxNAME, we define a module WxNAME containing all the stubs of
the methods that can be applied to values of that class. A static C++ method is just
mapped to an equivalent OCaml function. A non-static C++ method is mapped to a
function taking the object as first argument, and then other arguments of the method.

Note that the module does not only contain the stubs for methods of the class, but also
for methods of all the ancestors of the class, since these methods can also be applied on
an object of that class. However, although it might look expensive in code size to have so
many stubs, it does not cost any extra runtime code, since the stubs are OCaml external
primitives, and a stub for a method of an ancestor class directly calls the corresponding
external primitive of ancestor class1.

For inheritance, we provide cast functions in OCaml to cast an OCaml value matching
a given C++ class to all of its ancestor classes. These functions are directly implemented
by the identity function primitive of OCaml ("%identity"). We also provide a sub-module
called Unsafe in every class, with cast functions to subclasses. These cast functions map
to C++ <dynamic cast> casts, and may raise an exception if the value is not of the
expected subclass.

Finally, we also provide properties for each class, i.e. a set of methods, gathered
as variants in a type, that change the state of the object and do not return any value.
We provide a set function that takes a list of such properties, and call each method
sequentially, and then returns the object. This function has proved very practical during
the translation of C++ examples.

For example, here is the OCaml code for the binding of class WxCommandEvent:

open WxClasses (* Specific methods of the WxCommandEvent class *)

external getInt : wxCommandEvent -> int = "wxCommandEvent_GetInt_c"

external getString: wxCommandEvent -> string = "wxCommandEvent_GetString_c"

...

(* Methods inherited from parents , if any *)

1This technique requires to dynamically type C++ objects, and to cast them before calling the method

2

external skip : wxCommandEvent -> bool -> unit = "wxEvent_Skip_c"

external getTimestamp: wxCommandEvent -> int = "wxEvent_GetTimestamp_c"

...

(* Cast functions to parents (WxEvent and WxObject) *)

external wxEvent : wxCommandEvent -> wxEvent = "%identity"

external wxObject : wxCommandEvent -> wxObject = "%identity"

module Unsafe = struct (* Cast functions to children , if any *)

let wxCalendarEvent (x : wxCommandEvent) =

(WxClasses.wxCast 76 43 x : wxCalendarEvent)

...

end

3 Implementation

The first implementation of wxOCaml was based on wxCaml, itself based on wxHaskell[2],
itself using the manually written bindings of wxEiffel. While wxHaskell would generate
Haskell stubs and classes from the include files describing the C prototypes of the wxEiffel
stubs, wxCaml used camlidl to automatically generate OCaml stubs from these include
files, modified to add some necessary IDL annotations.2

This solution had many drawbacks, for example:

• As a fork of wxHaskell, itself of wxEiffel, it would require to keep a close eye on
these projects to follow their evolutions, that can conflict with wxOCaml evolution.

• A lot of C++/C stubs of wxEiffel in the include files are not correctly typed, or
the types cannot be correctly mapped to OCaml types, requiring a lot of changes in
these files, that would become difficult to synchronize with their original versions.

• Adding support for new classes/methods requires to manually write stubs to call the
C++ method from a C function, and then to modify the include files to provide the
prototype of the function, so that camlidl can generate the corresponding stubs.

• The (incomplete) information on the C++ class hierarchy was not used by camlidl,
so that the only way to call ancestor methods from subclasses was to make all types
equivalent, breaking type-safety. Although we experimented a partial solution by
modifying camlidl, the results were considered not powerful enough.

The new implementation of wxOCaml does not share any code with other wxCam-
l/wxHaskell/wxEiffel projects. Instead, we implemented a new stub generator, with the
following properties:

• It takes as input a list of files written in a specific DSL, close to C++ syntax,
specifying both the class hierarchy and the prototypes of C++ methods. Adding
support for a new method is usually as simple as adding the C++ prototype of that
method, no C/C++ stub has to be written.

• It generates directly the WxClasses module containing all the class types, and for
each class, the OCaml module and the C++ code. In the C++ code, only one
C/C++ function per method is generated, with a C name (extern "C") and C++
code, working correctly with the constraints of OCaml garbage collector.

• The DSL contains support for versioning, so that, depending on the version of
WxWidgets installed (2.8 or 2.9), some stubs are generated or not.3

2wxEiffel provides C functions to call C++ methods, camlidl generates C functions to call these wxEiffel
C functions from OCaml.

3If they are not, the function still exists, but raises an exception when called. This behavior can be altered
by a configuration option at build time.

3

Here is the DSL file corresponding to the wxCommandEvent class:

class wxCommandEvent inherit wxEvent begin

int GetInt () const

wxString GetString () const

...

end

events wxCommandEvent [(* The list of events using this type *)

EVT_COMMAND_BUTTON_CLICKED

EVT_COMMAND_CHECKBOX_CLICKED

...

]

4 Conclusion

The project started on March 28, 2013, the second implementation was started on April
9, 2013, and, on June 7, 2013, 1637 methods were implemented, corresponding to 96
WxWidgets C++ classes. Some non-trivial examples from WxWidgets were successfully
translated to OCaml (calendar for date/time widgets, keyboard for mouse/key events,
drawing for canvas manipulations, stc for the Scintilla editor, wizard for testing over-
loaded methods, etc.). The library is compatible with both WxWidgets 2.8 (current
version) and 2.9 (next version).

We think this work is interesting for two main reasons:

• The library has an interesting set of widgets, providing a better look-and-feel on
Windows and Mac OS X, while still being easy to use by beginners. Translation
of C++ examples has shown that, although our design choices require to have ex-
plicit casts between classes (when used as an argument of a method in place of an
ancestor), and full qualifications of function calls (WxFrame.show frame instead of
frame->show()), the verbosity is not so high compared to C++ (especially thanks
to local opening of modules using the M.(...) notation).

• Although our stub generator is specific to this library (it has support for specific
features of WxWidgets, such as events), the approach can be used for other C++
libraries, to automatically generate stubs from a simple DSL description, close to
C++ prototypes. Especially, we think that it would be much more difficult to
generate a code equivalent to the code generated by our tool, using generic tools
designed for other languages, such as SWIG[1].

We plan now to continue translating examples from WxWidgets from C++ to OCaml,
adding support for the most commonly used widgets, and for the most useful methods of
each widget, and providing a better support for versioning and configuration (i.e. missing
dependencies causing missing widgets).

References

[1] D. M. Beazley. Swig: an easy to use tool for integrating scripting languages with c
and c++. In Proceedings of the 4th conference on USENIX Tcl/Tk Workshop, 1996 -
Volume 4, TCLTK’96, pages 15–15, Berkeley, CA, USA, 1996. USENIX Association.

[2] D. Leijen. wxhaskell: a portable and concise gui library for haskell. In Proceedings of
the 2004 ACM SIGPLAN workshop on Haskell, Haskell ’04, pages 57–68, New York,
NY, USA, 2004. ACM.

4

	Introduction
	Design Choices
	Implementation
	Conclusion

